
Sitecore CMS 7.0 or later Sitecore Guide Template Rev: 10 February 2014

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Sitecore CMS 7.0 or later

Sitecore Search and
Indexing Guide
A Guide for Developers and Administrators

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 2 of 38

Table of Contents

Chapter 1 Introduction .. 4
1.1 Overview ... 5
1.2 Maintaining Search Indexes in Sitecore .. 6

Chapter 2 Configuring Search and Indexing .. 7
2.1 Configuration Files .. 8

2.1.1 Sitecore.ContentSearch Configuration File ... 8
2.2 Default Index Configuration ... 9

Chapter 3 Log Files .. 10
3.1 Logging Search and Indexing Operations ... 11

3.1.1 Verbose Logger ... 11
3.2 Crawling Log ... 12
3.3 Search Log .. 14

Chapter 4 Index Management.. 15
4.1 Rebuilding Indexes .. 16

4.1.1 Rebuilding Search Indexes in Sitecore ... 16
4.1.2 Rebuilding Search Indexes using Custom Code .. 16
4.1.3 Rebuilding Search Indexes using Content Editor ... 16
4.1.4 SwitchOnRebuildLuceneIndex .. 17

How to activate ... 18
Post-Activation-steps ... 18

4.2 Index Property Store ... 18
Configuration .. 19

4.3 Index Dependent Html Cache Management ... 21
4.4 Index Update Strategies .. 22

4.4.1 RebuildAfterFullPublish Strategy .. 22
Attaching to an index .. 22
Recommendation ... 22

4.4.2 OnPublishEndAsync Strategy ... 23
Processing .. 23
Attaching to an index .. 24
Recommendation ... 24

4.4.3 IntervalAsynchronous Strategy ... 24
Processing .. 24
Attaching to an index .. 25
Recommendation ... 25

4.4.4 Synchronous Strategy ... 26
Processing .. 26
Requirements ... 26
Attaching to an index .. 26
Recommendation ... 26

4.4.5 RemoteRebuildStrategy .. 27
Attaching to an index .. 27
Recommendation ... 27

4.4.6 Manual Strategy .. 27
Attaching to an index .. 28
Recommendation ... 28

4.5 Boosting Search Results at Indexing Time ... 29
Configuration .. 29

4.5.1 Field Level Boosting .. 30
4.5.2 Item Level Boosting ... 30
4.5.3 Rule-Based Boosting .. 31
4.5.4 Rule-Based Boosting for Fields ... 33
4.5.5 Troubleshooting Boosting ... 33

Chapter 5 Pipelines .. 34

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 3 of 38

5.1 Pipelines Overview .. 35
5.2 contentSearch.queryWarmup ... 36
5.3 indexing.getDependencies Pipeline .. 37

5.3.1 How to Enable/Disable .. 37
5.3.2 Usage .. 37
5.3.3 How to troubleshoot .. 38

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 4 of 38

Chapter 1

Introduction

This guide is for Sitecore partners and developers who want to implement search
functionality in Sitecore CMS.

 Overview of Search and Indexing

 Maintaining Indexes in Sitecore

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 5 of 38

1.1 Overview

Lucene is an open source search engine used in Sitecore CMS for indexing and searching the
contents of a Web site. Sitecore CMS 7.0 uses Lucene 3.0.3. Large, distributed Sitecore installations
which require increased search performance can implement the SOLR search module. For more
information, see the Sitecore Search Scaling Guide.

Sitecore implements a wrapper for the Lucene engine which has its own API. The original API

(Lucene.Net) and the Sitecore API (Sitecore.ContentSearch) are both accessible to

developers that want to extend their indexing and search capabilities.

However, before you start to use Lucene.Net or the Sitecore.Search API, it is important to understand
some key concepts.

Important Note

The Sitecore.Data.Indexing API was deprecated in Sitecore CMS 6.5. The

Sitecore.Search API works with Sitecore CMS 6 and 7, but is not recommended for new

development in version 7.0. Developers should use the Sitecore.ContentSearch API when using

Sitecore Search or Lucene search indexes in Sitecore 7.0.

Sitecore Search is already implemented in a number of different ways in the Sitecore Desktop. These
features use the older Sitecore.Search API.These features are:

 Content Editor — the search box above the content tree (has the same functionality as Quick
Search).

 Quick Search — the search box to the bottom right of the Sitecore Desktop (has the same
functionality as Content Editor Search).

 Classic Search — this is available from the Sitecore Start button and in the Navigate tab on
the ribbon.

You can also use the Sitecore.ContentSearch API to extend these capabilities to create custom

search functionality for your web site.

For more information, see the manual Developer’s Guide to Item Buckets and Search.

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 6 of 38

1.2 Maintaining Search Indexes in Sitecore

In Sitecore 7 the index maintenance infrastructure has been completely revised. Instead of one global
way of maintaining the indexes, there is a more transparent and flexible mechanism of Index Update
Strategies. Each strategy attached to an index provides a unique way of hooking up to the Sitecore
events to keep your index updated.

For more information, see the section Index Update Strategies.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 7 of 38

Chapter 2

Configuring Search and Indexing

This section describes the configuration files are used to control search and indexing
in Sitecore CMS 7.0

 Configuration files that are shipped with Sitecore CMS 7.0

 Default configuration

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 8 of 38

2.1 Configuration Files

The following files are shipped with Sitecore CMS 7.0. They are located in the Website\App-

Config\Include folder.

2.1.1 Sitecore.ContentSearch Configuration File

Index Element Description

<events> Specifies event handlers for indexing:start, indexing:start:remote,
indexing:end and indexing:end:remote events.

<hooks> This will run necessary initialization processes, such as EventHub
registration, warmup queries for you index. You can extend this
class or add additional hooks.

<pipelines> Specifies all pipeline processors related to search and indexing

<boostingManager> Specifies the manager class controlling the search result boosting
logic.

<searchManager> Specifies the search manager and provider classes.

<scheduling> Specifies the interval at which indexing will occur.

<settings> Specifies settings such as parallel indexing, maximum search
results and date format.

<commands> Specifies handlers for indexing events.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 9 of 38

2.2 Default Index Configuration

Index Element Description

<indexUpdateStrategies> Specifies which update strategy will be used.

<databasePropertyStore> Specifies key values that can be used in search.

<configuration> Settings for index configuration.

<DefaultIndexConfiguration> These settings are used if no custom settings are
available for an index.

<IndexAllFields> Default value is true.

<Analyzer> The Lucene Standard Analyzer is specified by
default. A custom analyzer may speed searches.

<fieldMap> This allows you to map a Sitecore field name to
the index and store it in an appropriate way,
including original value storage, boost value, and
data type.

<virtualFieldProcessors> Specifies custom query processing for a named
field.

<exclude> Exclude items from the index based on template
type.
Exclude specific fields from the index, if
IndexAllFields is set to true.

<include> Include items from the index based on template
type, if IndexAllFields is set to false.

<fields> Allows you to format the way that field values are
stored in the index, remove inbuilt Sitecore fields
and store computed fields.

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 10 of 38

Chapter 3

Log Files

This chapter describes the log files and logging options that are available for search
and indexing in Sitecore 7.0.

 Verbose Logger

 Crawling Log

 Search Log

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 11 of 38

3.1 Logging Search and Indexing Operations

Sitecore CMS 7.0 provides log files for tracking search and indexing operations. The Crawling log
tracks information about indexing operations. The Searching log shows queries that were generated
and run.

3.1.1 Verbose Logger

In order to facilitate the transparency of the indexing mechanism, in addition to standard logging

embedded within various elements of the Sitecore.ContentSearch namespace, additional

verbose logging can be enabled.

The VerboseLogger is instantiated conditionally during initial search configuration.

The VerboseLogger is instantiated only when the following setting is set to true:

“Indexing.VerboseLogging”

Since this setting is not present in the configuration out of the box and falls back to false, the

VerboseLogger is disabled by default. See the

Sitecore.ContentSearch.VerboseLogging.config.example file if you wish to enable

Verbose Logging.

It is important to enable the VerboseLogger component only in special circumstances and never run

it for long periods in production. Otherwise, this would result in an extremely large log file, which may
have performance implications.

This feature is designed to facilitate search index configuration and provide necessary insight in

troubleshooting scenarios. For example, if a particular item is not getting indexed, VerboseLogger

can provide more context and help figure out the problem.

The VerboseLogger is using a rich set of indexing events:

indexing:excludedfromindex

indexing:start

indexing:end

indexing:addingrecursive

indexing:addedrecursive

indexing:adding

indexing:added

indexing:refreshstart

indexing:refreshend

indexing:deleteitem

indexing:deletegroup

indexing:updatingitem

indexing:updateditem

indexing:updatedependents

indexing:refreshstart

indexing:refreshend

indexing:propertyset

indexing:propertyget

indexing:propertyadd

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 12 of 38

3.2 Crawling Log

The Crawling Log is designed to provide more insight into what’s going on during the indexing
process.

Similar to other loggers, the Crawling Log is defined in the web.config file, in the <log4net />

section. The default logging level is INFO:

<logger name="Sitecore.Diagnostics.Crawling" additivity="false">

 <level value="INFO" />

 <appender-ref ref="CrawlingLogFileAppender" />

</logger>

The appender for this log is defined in the same section, and by default is setup to write to a .txt

file under the folder data/logs:

<appender name="CrawlingLogFileAppender" type=

 "log4net.Appender.SitecoreLogFileAppender, Sitecore.Logging">

 <file value="$(dataFolder)/logs/Crawling.log.{date}.txt" />

 <appendToFile value="true" />

 <layout type="log4net.Layout.PatternLayout">

 <conversionPattern value="%4t %d{ABSOLUTE} %-5p %m%n" />

 </layout>

</appender>

Since the implementation is based on Log4Net, you can tweak the appender to log to a Windows

Event Log or database, or any other location. For more information, see the Log4Net documentation.

Here is a sample of the output from the Crawling Log. As you can see, when you start Sitecore, the
log renders information on how each index is configured and initialized.

INFO [Index=sitecore_core_index] Initializing IntervalAsynchronousUpdateStrategy

 with interval '00:01:00'.

INFO [Index=sitecore_core_index] Initializing LuceneDatabaseCrawler.

 DB:core / Root:/sitecore

INFO [Index=sitecore_master_index] Initializing SynchronousStrategy.

INFO [Index=sitecore_master_index] Initializing LuceneDatabaseCrawler.

 DB:master / Root:/sitecore

INFO [Index=sitecore_web_index] Initializing OnPublishEndAsynchronousStrategy.

INFO [Index=sitecore_web_index] Initializing LuceneDatabaseCrawler.

 DB:web / Root:/sitecore

INFO [Index=custom_master] Initializing IntervalAsynchronousUpdateStrategy

 with interval '00:00:05'.

INFO [Index=custom_master] Initializing LuceneDatabaseCrawler. DB:master /

 Root:{D70CBEED-6DCF-483F-978F-6FC3C8049512}

INFO [Index=custom_web] Initializing OnPublishEndAsynchronousStrategy.

INFO [Index=custom_web] Initializing LuceneDatabaseCrawler.

 DB:web / Root:{D70CBEED-6DCF-483F-978F-6FC3C8049512}

INFO [Index=custom_web] Creating primary and secondary directories

INFO [Index=custom_web] Resolving directories from index property

 store for index 'custom_web'

INFO [Index=custom_master] IntervalAsynchronousUpdateStrategy executing.

The Crawling Log will also output every time an index update strategy is hit for a particular index,
when a full rebuild is triggered on a particular index.

Because the Crawling Log is set to output at the INFO level by default, the output information will be

limited.

If you require more detailed logs of indexing activity for troubleshooting purposes, you can change the

logging level to DEBUG:

<logger name="Sitecore.Diagnostics.Crawling" additivity="false">

 <level value="DEBUG" />

 <appender-ref ref="CrawlingLogFileAppender" />

</logger>

This configuration change, along with enabling the Verbose Logger, will produce a very detailed, item
level indexing log. For obvious reasons, this setting is meant to be used only for troubleshooting at
very short times in any environment.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 13 of 38

Here are some use cases when the Crawling Log can be helpful:

 One of my indexes is not getting updated.

 I have determined that some items are not being indexed, but I don’t know why.

 For some reason, full rebuild is triggered for my index. I need to understand why.

 I would like to explore indexing activity on a particular server.

 I am setting up a multi-server environment, which is heavily relying on ContentSearch. I need
to test how my index is being updated across all servers.

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 14 of 38

3.3 Search Log

The Search Log provides an ultimate insight on how your search queries are executed.

Similar to other loggers, the SearchLog is defined in the <log4net /> section of web.config, with

the default logging level set to INFO:

 <logger name="Sitecore.Diagnostics.Search" additivity="false">

 <level value="INFO" />

 <appender-ref ref="SearchLogFileAppender" />

 </logger>

The appender for this log is defined in the same section, and by default is setup to write to a .txt

file under the folder data/logs:

<appender name="SearchLogFileAppender"

 type="log4net.Appender.SitecoreLogFileAppender, Sitecore.Logging">

 <file value="$(dataFolder)/logs/Search.log.{date}.txt" />

 <appendToFile value="true" />

 <layout type="log4net.Layout.PatternLayout">

 <conversionPattern value="%4t %d{ABSOLUTE} %-5p %m%n" />

 </layout>

</appender>

Since the implementation is based on Log4Net, you can configure the appender to log to a Windows

Event Log or database, or any other location. For more information, see the Log4Net documentation.

Here is a sample output of the SearchLog:

3212 19:31:56 INFO ExecuteQueryAgainstLucene :

 +_datasource:sitecore +(+(+_path:11111111111111111111111111111111 +_latestversion:1)

 +mileagehwy:[1 TO 4mileagecity]) - Filter : 3212 19:31:56

 INFO Results from web database :8818

If you need to enable full level debug of content searches, enable this setting in the

Sitecore.ContentSearch..config file and change the logging level for the SearchLogger to

DEBUG: ContentSearch.EnableSearchDebug = true

<logger name="Sitecore.Diagnostics.Search" additivity="false">

 <level value="DEBUG" />

 <appender-ref ref="SearchLogFileAppender" />

</logger>

It is important to understand the value of the SearchLog in context of a particular persona:

For developers, it is important to understand how the Linq code translates into native search queries
passed onto the Search Provider (Lucene or Solr out of the box).

For the administrators, it is important to understand which search queries are performed on a
particular server. This information can be used for further optimization, such as inclusion into the

queryWarmup pipeline.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 15 of 38

Chapter 4

Index Management

This chapter explains how to rebuild, manage, and optimize indexing in Sitecore 7.0.

 Rebuilding Indexes

 Index Property Store

 Index Dependent Html Cache Management

 Index Update Strategies

 Boosting Search Results

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 16 of 38

4.1 Rebuilding Indexes

In certain situations, such as, when deploying a site to a production environment or when indexes are
out of sync or corrupted, it may be necessary to perform a full rebuild operation on a particular index.

4.1.1 Rebuilding Search Indexes in Sitecore

To rebuild indexes from the Sitecore Client:

1. Log in to the Sitecore Desktop.

2. Open the Control Panel.

3. Click Indexing and then click Indexing Manager.

4. In the wizard select the indexes you want to rebuild and click Rebuild.

4.1.2 Rebuilding Search Indexes using Custom Code

To rebuild indexes from custom code, run one of these scripts from a custom .aspx page:

// To rebuild “new” search indexes, use this piece of code for every “new” index

IndexCustodian.FullRebuild(ContentSearchManager.GetIndex(“[INDEX NAME]”, true);

// Or to rebuild all indexes, use the following piece of code:

IndexCustodian.RebuildAll();

4.1.3 Rebuilding Search Indexes using Content Editor

In order to facilitate quick index management, in the Content Editor, on the Developer tab, an
Indexing Power Tools group has been added:

This group contains the following commands:

Rebuild Index Command

When you click Rebuild Index, a list of all indexes registered within the system is displayed:

This list contains the id of the index, the last time index was updated in local time, and the same
timestamp in UTC.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 17 of 38

To rebuild an index, click it in the list and a progess dialog box is displayed:

Rebuild All

Performs a full rebuild on all the indexes registered in the system. A progress dialog box is displayed
for each index.

Refresh Tree

This operation will process the selected item and all its descendants recursively and will force an
update operation on all indexes that are responsible for the selected content area. This command is
reserved for special cases when the incremental indexing is either not working as expected, or when
the Manual update strategy is used. Use this feature only when absolutely necessary.

4.1.4 SwitchOnRebuildLuceneIndex

This class inherits from LuceneIndex and adds important capability of maintaining two directories for

a particular index. This solves the problem of LuceneIndex implementation which resets (deletes)

the index directory before a full index rebuild. Since this problem is important only for production

environments, you can reconfigure your custom index with the SwitchOnRebuildLuceneIndex

implementation during testing and before moving to a production environment.

When the SwitchOnRebuildLuceneIndex object is initialized, the presence of a secondary folder

is verified. If the folder does not exist, it is created with the baseline directory name + _sec:

The index uses the IndexReader.LastModified(Directory) method to choose a primary

directory based on the last modified date. The most up to date directory is used as the primary

directory. Once you have enabled SwitchOnRebuildIndex, you must perform the Post-Activation

steps to rebuild the indexes

Note
The primary directory is used for index read and update operations. The secondary directory is a
fallback for read operations during a full index rebuild.

The information about which directory is primary and which one is secondary is written to the Index
Property Store.

If the index has already been initialized, the information about which directory is primary and which is
secondary is retrieved from the Index Property Store.

During the initialization of the SwitchOnRebuildLuceneIndex object, the following entries are

written to the CrawlingLog:

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 18 of 38

“Resolving directories from index meta data store”

"Resolving directories by last time modified"

"Primary directory last modified = '…'"

"Secondary directory last modified = '…'"

“ReadUpdateDirectory is set to …”

“FullRebuildDirectory is set to '{0}'”

When the full index rebuild is completed, the primary and secondary directories are switched.

How to activate

To use this implementation, change the type reference on a particular search index to

Sitecore.ContentSearch.LuceneProvider.SwitchOnRebuildLuceneIndex:

<indexes hint="list:AddIndex">

 <index id="content_index"

 type="Sitecore.ContentSearch.LuceneProvider.SwitchOnRebuildLuceneIndex,

 Sitecore.ContentSearch.LuceneProvider">

 <param desc="name">$(id)</param>

 <param desc="folder">$(id)</param>

 ...

Post-Activation-steps

After the configuration file has been adjusted, and the search index has been adjusted to use

the SwitchOnRebuildLuceneIndex method, your website will use indexes from the primary

directory. Each time you perform a full index rebuild, it is carried out in the secondary directory. The
secondary directory then becomes the primary one after the rebuild.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 19 of 38

4.2 Index Property Store

The purpose of the index property store is to persist additional meta data for indexes such as last
updated timestamp.

Configuration

The out of the box index property store implementation is defined within the

sitecore/contentSearch area within the

Sitecore.ContentSearch.Lucene.DefaultIndexConfiguration.config file:

<databasePropertyStore

 type="Sitecore.ContentSearch.Maintenance.IndexDatabasePropertyStore,

 Sitecore.ContentSearch">

 <Key>$(1)</Key>

 <Database>core</Database>

</databasePropertyStore>

As the name suggests, this index property store implementation is using the Sitecore database as

persistent store, specifically, the Properties table of the designated database. As can be seen from

the parameters, this component is set to use the core database out of the box.

The property store is assigned to each index using the following configuration:

<index id="content" type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex,

 Sitecore.ContentSearch.LuceneProvider">

 <param desc="name">$(id)</param>

 <param desc="folder">$(id)</param>

 <param desc="propertyStore"

 ref="contentSearch/databasePropertyStore" param1="$(id)" />

The first param1 attribute must be set to $(id) or something else that is unique within all indexes.

Essentially, the index property store is a key/value based storage. The key consists of the Master Key
and the key of the record that needs to be saved. The Master Key depends on configuration. In the

example above, the Key parameter on the databasePropertyStore definition node

(<Key>$(1)</Key>) will pick up the first parameter from the place where

databasePropertyStore is referenced:

<param desc="propertyStore" ref="contentSearch/databasePropertyStore" param1="$(id)" />

Since this record is defined within the <index /> element, $(id) will be equal to “content”:

<index id="content">

This way the databasePropertyStore can guarantee key uniqueness across all indexes. In

addition, the InstanceName gets appended to the MasterKey, which guarantees key uniqueness
across all environments.

So taking the index configuration above into account, if we attempt to save a custom property to the
index property store using this code:

index.PropertyStore.Set(“docs-count”, “123”);

The value “123” will be saved with key = content_CM01_docs-count
 where content is index id, CM01 is instance name.

How to create a custom index property store implementation:

If the out of the box implementation does not meet the implementation needs, a custom index

property store implementation can be created by implementing the IIndexPropertyStore

interface.

After the custom index property store implementation is created, it needs to be defined somewhere

within the <contentSearch /> area and assigned to appropriate indexes.

For example:

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 20 of 38

<contentSearch>

 <fileSystemPropertyStore type="Custom.IndexFileSystemPropertyStore, Custom">

 <Key>$(1)</Key>

 <FilePath>$(dataFolder)/indexpropertystore</FilePath>

 </fileSystemPropertyStore>

...

<index id="content" type="Sitecore.ContentSearch.LuceneProvider.

 LuceneIndex, Sitecore.ContentSearch.LuceneProvider">

 <param desc="name">$(id)</param>

 <param desc="folder">$(id)</param>

 <param desc="propertyStore"

 ref="contentSearch/fileSystemPropertyStore"

 param1="$(id)"/>

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 21 of 38

4.3 Index Dependent Html Cache Management

Some Index Update Strategies are designed to be invoked either on the publish-end event or on an
interval basis. If the Sitecore instance is leveraging html cache for renderings/controls/sublayouts
which contain code that depends on one or more indexes, this can create a race condition between
html cache clearing and index update operations.

To solve this issue, the renderings/controls/sublayouts that depend on an index need to be

marked with the Clear on Index Update flag (along with the “Cacheable” checkbox. They will be
removed from cache and can be reloaded with current data when the index update is completed

Similar to how other Vary by settings work, this can either be done on the rendering definition item or
on the layout details for particular content item.

This flag will make the html cache of renderings be cleared on index update by the

IndexDependentCacheManager. The execution of this component is triggered from the

indexing:end and indexing:end:remote events:

<event name="indexing:end">

 <handler type="Sitecore.ContentSearch.Maintenance.

 IndexDependentHtmlCacheManager, Sitecore.ContentSearch" method="Clear" />

</event>

<event name="indexing:end:remote">

 <handler type="Sitecore.ContentSearch.Maintenance.

 IndexDependentHtmlCacheManager, Sitecore.ContentSearch" method="Clear" />

</event>

These events are defined within Sitecore.ContentSearch.config.

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 22 of 38

4.4 Index Update Strategies

Index Update Strategies are designed to provide a transparent and flexible model for index
maintenance. Each index can be configured with unique set of index update strategies, however, it is
not recommended to have more than 3 update strategies per index. Also, it is strongly not
recommended to leverage update strategies of a similar nature within one index (more on this below).

Sitecore 7.0 ships with a diverse set of Index Update Strategies, however developers can extend this
set even further. All out of the box update strategies are defined under the following node within the

Sitecore.ContentSearch configuration files:

sitecore/contentSearch/indexUpdateStrategies

<manual type="Sitecore.ContentSearch.Maintenance.Strategies.ManualStrategy,

 Sitecore.ContentSearch" />

4.4.1 RebuildAfterFullPublish Strategy

This is how this strategy is defined in configuration:

<rebuildAfterFullPublish type="Sitecore.ContentSearch.Maintenance.Strategies.

 RebuildAfterFullPublishStrategy, Sitecore.ContentSearch" />

This strategy does exactly what the name implies. For example, in environments where a full publish
is required to run regularly, it makes no sense to trigger an incremental index rebuild, as it will be
quite taxing. Instead, this strategy will trigger a full index rebuild after the completion of the full publish
process, which will be much more efficient. In a distributed environment, the index rebuild will be
triggered on all remote servers where this strategy is configured. In this case, the Event Queue must
be enabled for this environment. Please refer to the Sitecore Search Scaling Guide for more
information.

During the initialization, it subscribes to the OnFullPublishEnd event and triggers a full index

rebuild.

When this strategy is attached to an index and initialized, the following message will be seen in the

CrawlingLog file:

Initializing RebuildAfterFullPublishStrategy for index '<index_name>'

When this strategy is triggered, the following message will be seen in the CrawlingLog file:

RebuildAfterFullPublishStrategy triggered on index '<index_name>'

Attaching to an index

This is how you can attach this strategy to an index:

<index id="sitecore_index" type="Sitecore.ContentSearch.LuceneProvider.

 LuceneIndex, Sitecore.ContentSearch.LuceneProvider">

 <param desc="name">$(id)</param>

 <param desc="folder">$(id)</param>

 <strategies hint="list:AddStrategy">

 <strategy ref="contentSearch/indexUpdateStrategies/rebuildAfterFullPublish" />

 </strategies>

 <Analyzer ref="search/analyzer" />

 ...

Recommendation

This strategy should not be combined with the Synchronous Strategy, while it may be combined with
others.

Since the execution of this strategy effectively causes a full index rebuild, it is recommended to

combine this strategy with the usage of the SwitchOnRebuildLuceneIndex implementation.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 23 of 38

When this strategy is used together with the “onPublishEndAsync” strategy, it needs to be registered
as the first entry in the list in order to be triggered first:

<index id="sitecore_index" type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex,

 Sitecore.ContentSearch.LuceneProvider">

 <param desc="name">$(id)</param>

 <param desc="folder">$(id)</param>

 <strategies hint="list:AddStrategy">

 <strategy ref="contentSearch/indexUpdateStrategies/rebuildAfterFullPublish" />

 <strategy ref="contentSearch/indexUpdateStrategies/onPublishEndAsync" />

 </strategies>

 <Analyzer ref="search/analyzer" />

4.4.2 OnPublishEndAsync Strategy

This is how this strategy is defined in configuration, notice the additional parameter database that is

passed to the constructor of the OnPublishEndAsynchronousStrategy class:

<onPublishEndAsync type="Sitecore.ContentSearch.Maintenance.Strategies.

 OnPublishEndAsynchronousStrategy, Sitecore.ContentSearch">

 <param desc="database">web</param>

 <CheckForThreshold>true</CheckForThreshold>

</onPublishEndAsync>

The “database” parameter defines the database from where to look up the item changes for the

processing. See more information below about the CheckForThreshold property.

This strategy does exactly what the name implies. During the initialization, it subscribes to the

OnPublishEnd event and triggers an incremental index rebuild. With separate CM and CD servers,

this event will be triggered via the EventQueue object, meaning that the EventQueue object needs

to be enabled for this strategy to work in such environment.

When this strategy is attached to an index and initialized, the following message will be seen in the

CrawlingLog file:

Initializing OnPublishEndAsynchronousStrategy for index '<index_name>'.

When this strategy is triggered, the following message will be seen in the CrawlingLog file:

OnPublishEndAsynchronousStrategy triggered on index '<index_name>'

Processing

The strategy will use the EventQueue object from the database it was initialized with:

<param desc="database">web</param>

This means that there are multiple criteria towards successful execution for this strategy:

 This database must be specified in the <databases /> section of the configuration file.

 The EnableEventQueues setting must be set to true.

 The EventQueue table within the preconfigured database should have entries dated later

than index’s last update timestamp.

In order to prevent excessive processing of the Event Queue, the strategy will force a full index
rebuild when the number of entries in the history table exceeds the number defined in the following

setting: Indexing.FullRebuildItemCountThreshold. In most cases, this means that a substantial

publishing or deployment occurred, which should always trigger a full index rebuild. This behavior will

only be triggered when the following property in configuration is set to true (which is the default):

<CheckForThreshold>true</CheckForThreshold>

If this setting is set to true it is recommended to use the SwitchOnRebuildLuceneIndex

implementation for an index that is using this strategy.

The Indexing.FullRebuildItemCountThreshold setting is not set out of the box and defaults

to 100000.

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 24 of 38

Attaching to an index

This is how you can attach this strategy to an index:

<index id="sitecore_index" type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex,

 Sitecore.ContentSearch.LuceneProvider">

 <param desc="name">$(id)</param>

 <param desc="folder">$(id)</param>

 <strategies hint="list:AddStrategy">

 <strategy ref="contentSearch/indexUpdateStrategies/onPublishEndAsync" />

 </strategies>

 <Analyzer ref="search/analyzer" />

 ...

Recommendation

This strategy should not be combined with the following other strategies:

 SynchronousStrategy

 intervalAsync

This strategy can be combined with the following other strategies:

 rebuildAfterFullPublish

 remoteRebuild

This strategy is recommended for multi-server/multi-instance environments where the EventQueue is
already enabled as a part of the Scaling Guide configuration. See the Sitecore Search Scaling Guide
for more information.

4.4.3 IntervalAsynchronous Strategy

This is how this strategy is defined in configuration, notice two parameters: database and

interval:

<intervalAsyncMaster type="Sitecore.ContentSearch.Maintenance.Strategies.

 IntervalAsynchronousStrategy, Sitecore.ContentSearch">

 <param desc="database">master</param>

 <param desc="interval">00:00:10</param>

 <CheckForThreshold>true</CheckForThreshold>

</intervalAsyncMaster>

The database parameter defines the database from where to look up the item changes for the

processing.

The interval parameter defines the frequency of the strategy trigger.

The CheckForThreshold parameter is described further down.

When this strategy is attached to an index and initialized, the following message will be seen in the

CrawlingLog file:

Initializing IntervalAsynchronousUpdateStrategy for index '<index_name>'.

When this strategy is triggered, the following message will be seen in the CrawlingLog file:

IntervalAsynchronousUpdateStrategy triggered on index '<index_name>'

Processing

This strategy is triggered on a time interval instead of the OnPublishEnd event, and is relying on the

History Engine Store to process item changes.

 This referenced database must exist.

 This referenced database must have History Engine enabled.

 The History Engine should have entries dated later than index’s last update timestamp.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 25 of 38

It is leveraging an internal timer that is initialized with a predefined interval value and is triggered

when the timer fires (every 10 seconds as shown below).

<intervalAsync type="Sitecore.ContentSearch.Maintenance.Strategies.

 IntervalAsynchronousStrategy, Sitecore.ContentSearch">

 <param desc="database">web</param>

 <param desc="interval">00:00:10</param>

 <CheckForThreshold>true</CheckForThreshold>

</intervalAsync>

In order to prevent excessive processing of the History Engine Store, the strategy will force full index
rebuild when the number of entries in the history table exceeds the number defined in the following

setting: Indexing.FullRebuildItemCountThreshold. In most cases this means that a

substantial publishing or deployment occurred which should always trigger a full index rebuild.

This behavior will only be triggered when the following property in configuration is set to true (which

is the default):

<CheckForThreshold>true</CheckForThreshold>

If this setting is set to true, it is recommended to use the SwitchOnRebuildLuceneIndex

implementation.

The Indexing.FullRebuildItemCountThreshold setting is not enabled out of the box and

defaults to 100000.

Attaching to an index

This is how you can attach this strategy to an index:

<index id="sitecore_index" type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex,

 Sitecore.ContentSearch.LuceneProvider">

 <param desc="name">$(id)</param>

 <param desc="folder">$(id)</param>

 <strategies hint="list:AddStrategy">

 <strategy ref="contentSearch/indexUpdateStrategies/intervalAsync" />

 </strategies>

 <Analyzer ref="search/analyzer" />

 ...

Recommendation

This strategy should not be combined with the following other strategies:

 SynchronousStrategy

 onPublishEndAsync

This strategy can be combined with the following other strategies:

 rebuildAfterFullPublish

 remoteRebuild

This strategy is recommended for the master database indexes or for single-server environments
where it is important to conserve as many resources as possible.

Also, the strategy makes sense on less critical indexes which may not need to be updated as
frequently. Implementers can adjust the interval as they see fit.

Out of the box, this strategy is created specifically for the core and master databases:

 <intervalAsyncCore type="Sitecore.ContentSearch.Maintenance.Strategies.

 IntervalAsynchronousStrategy, Sitecore.ContentSearch">

 <param desc="database">core</param>

 <param desc="interval">00:01:00</param>

 <CheckForThreshold>true</CheckForThreshold>

 </intervalAsyncCore>

 <intervalAsyncMaster type="Sitecore.ContentSearch.Maintenance.Strategies.

 IntervalAsynchronousStrategy, Sitecore.ContentSearch">

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 26 of 38

 <param desc="database">master</param>

 <param desc="interval">00:00:10</param>

 <CheckForThreshold>true</CheckForThreshold>

 </intervalAsyncMaster>

4.4.4 Synchronous Strategy

This strategy provides the most close-to-real-time index update as possible and is the most expensive
both in terms of CPU and IO. Before using this strategy, please read the Recommendation section
carefully.

This is how this strategy is defined in configuration:

<sync type="Sitecore.ContentSearch.Maintenance.Strategies.SynchronousStrategy,

 Sitecore.ContentSearch" />

When this strategy is attached to an index and initialized, the following message will be seen in the

CrawlingLog file:

Initializing SynchronousStrategy for index '<index_name>'.

When this strategy is triggered, the following message will be seen in the CrawlingLog file:

SynchronousStrategy triggered on index '<index_name>'

Processing

This strategy hooks up to the low-level DataEngine events such as ItemSaved and

ItemSavedRemote. When used on a single server instance, the strategy guarantees an index

update immediately after item update. On a multi-server environment, the strategy will work along with

the EventQueue that will broadcast remote ItemSavedRemote events. The moment an item is

published and ItemSavedRemote event is raised, the strategy will be triggered.

Requirements

Sitecore must be configured according to the Scaling Guide, i.e. with the EventQueue enabled. See

the document Sitecore Search Scaling Guide for more information.

Attaching to an index

This is how you can attach this strategy to an index:

<index id="sitecore_index" type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex,

 Sitecore.ContentSearch.LuceneProvider">

 <param desc="name">$(id)</param>

 <param desc="folder">$(id)</param>

 <strategies hint="list:AddStrategy">

 <strategy ref="contentSearch/indexUpdateStrategies/sync" />

 </strategies>

 <Analyzer ref="search/analyzer" />

 ...

Recommendation

This strategy can only be combined with the following strategy:

 remoteRebuild

This strategy should be used only when the implementation requires immediate index updates and
where a dedicated indexing server infrastructure with plenty of processing resources is in place. Since
the OnPublishEndAsync strategy already provides an effective way of maintaining the search indexes
on CD servers after publishing, the only application of this strategy that can be recommended is on
CM servers for the indexes that process the master database, and where the timing of the index
update is absolutely critical. Such CM environments should account for the extra CPU and IO
intensity of the strategy. Using this strategy on a CM server with lots of content entry activity can

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 27 of 38

severely impact performance of the system. For most cases, the IntervalAsyncronous strategy
configured for the master database should be more than sufficient.

4.4.5 RemoteRebuildStrategy

This strategy is subscribing to the OnIndexingEndedRemote event which is triggered when a

particular index is rebuilt. The strategy will react only when a full index rebuild is performed.

This mechanism allows for rebuilding remote indexes when an index is forced to be rebuilt from the
Control Panel, for example.

<remoteRebuild type="Sitecore.ContentSearch.Maintenance.Strategies.

 RemoteRebuildStrategy, Sitecore.ContentSearch" />

Attaching to an index

This is how you can attach this strategy to an index:

<index id="sitecore_index" type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex,

 Sitecore.ContentSearch.LuceneProvider">

 <param desc="name">$(id)</param>

 <param desc="folder">$(id)</param>

 <strategies hint="list:AddStrategy">

 <strategy ref="contentSearch/indexUpdateStrategies/remoteRebuild" />

 </strategies>

 <Analyzer ref="search/analyzer" />

 ...

Recommendation

This strategy can be combined with any other strategy and can be quite handy within multi-server
environments where each Sitecore instance maintains its own copy of the index. This way full rebuild
can be triggered from one CM server, and this event will be raised on all remote servers where the
index is configured with this strategy.

Important
In order for this strategy to work on remote servers, the index name should be identical to the one for
which the index rebuild was forced.

Important
This strategy requires the Event Queue to be enabled within the environment. Please refer to the
Sitecore Search Scaling Guide for information on how to enable the Event Queue.

Important

In order for this strategy to work, the database that is assigned for system event queue storage (core

by default) should be shared between the Sitecore instance where the rebuild happened and where it
needs to be replayed.

4.4.6 Manual Strategy

This is a special kind of strategy that essentially disables any automatic index update. Indexes that
rely on this strategy will have to be rebuilt manually.

<manual type="Sitecore.ContentSearch.Maintenance.Strategies.ManualStrategy,

 Sitecore.ContentSearch" />

When this strategy is attached to an index and initialized, the following message will be seen in the

CrawlingLog file:

Initializing ManualStrategy for index '<index_name>'.

 Index will have to be rebuilt manually

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 28 of 38

Attaching to an index

This is how you can attach this strategy to an index:

<index id="sitecore_index" type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex,

 Sitecore.ContentSearch.LuceneProvider">

 <param desc="name">$(id)</param>

 <param desc="folder">$(id)</param>

 <strategies hint="list:AddStrategy">

 <strategy ref="contentSearch/indexUpdateStrategies/manual" />

 </strategies>

 <Analyzer ref="search/analyzer" />

 ...

Recommendation

It does not make sense to combine this strategy with any other strategy. It is reserved for special
cases when the whole indexing process must be outsourced to a dedicated server and no index
update should happen on a particular Sitecore instance.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 29 of 38

4.5 Boosting Search Results at Indexing Time

Items and specific fields can be boosted at indexing time to score these specific items better than
others. This can, for example, be used to promote popular/most sold books in a bookshop and show
less sold books as ranked lower than popular books in a search result.

Boosting can be applied on the item/document level or at field level.

Field level boosting can be used to make matches on a specific field more or less important. For
example, in a bookshop, the book product items have three fields: Title, Summary and Foreword. The
searches are still performed on all three fields, but matches in the Foreword field should be less
important that Title and Summary.

Note
Boosting can also be applied at query time and will also take effect on items or fields that have been
boosted at indexing time.

Configuration

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/">

 <sitecore>

 ...

 <pipelines>

 <!-- RESOLVE FIELD LEVEL BOOSTING

 Pipeline for resolving boosting rules on fields.

 Arguments: (Item) Item being indexed

 Example : Boost search results by a field value.

 -->

 <indexing.resolveFieldBoost help="Processors should derive from

 Sitecore.ContentSearch.Pipelines.ResolveBoost.ResolveFieldBoost.

 BaseResolveFieldBoostPipelineProcessor">

 <processor type="Sitecore.ContentSearch.Pipelines.ResolveBoost

 .ResolveFieldBoost.SystemFieldFilter, Sitecore.ContentSearch"/>

 <processor type="Sitecore.ContentSearch.Pipelines.ResolveBoost.

 ResolveFieldBoost.FieldDefinitionItemResolver, Sitecore.ContentSearch"/>

 <processor type="Sitecore.ContentSearch.Pipelines.ResolveBoost.

 ResolveFieldBoost.StaticFieldBoostResolver, Sitecore.ContentSearch"/>

 </indexing.resolveFieldBoost>

 <!-- RESOLVE ITEM LEVEL BOOSTING

 Pipeline for resolving boosting rules on items.

 Arguments: (Item) Item being indexed

 Example : Boost search results by an Item Template.

 -->

 <indexing.resolveItemBoost help="Processors should derive from

 Sitecore.ContentSearch.Pipelines.ResolveBoost.

 ResolveItemBoost.BaseResolveItemBoostPipelineProcessor">

 <processor type="Sitecore.ContentSearch.Pipelines.ResolveBoost.

 ResolveItemBoost.ItemLocationFilter, Sitecore.ContentSearch">

 <includedLocations hint="list">

 <content>/sitecore/content</content>

 <media>/sitecore/media library</media>

 </includedLocations>

 </processor>

 <processor type="Sitecore.ContentSearch.Pipelines.ResolveBoost.

 ResolveItemBoost.StaticItemBoostResolver, Sitecore.ContentSearch"/>

 <processor type="Sitecore.ContentSearch.Pipelines.ResolveBoost.

 ResolveItemBoost.LocalRuleBasedItemBoostResolver, Sitecore.ContentSearch"/>

 <processor type="Sitecore.ContentSearch.Pipelines.ResolveBoost.

 ResolveItemBoost.GlobalRuleBasedItemBoostResolver, Sitecore.ContentSearch"/>

 </indexing.resolveItemBoost>

 </pipelines>

 <!-- BOOSTING MANAGER

 The manager class controlling the boosting resolution logic

 -->

 <boostingManager defaultProvider="default" enabled="true">

 <providers>

 <clear/>

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 30 of 38

 <add name="default" type="Sitecore.ContentSearch.Boosting.

 PipelineBasedBoostingProvider, Sitecore.ContentSearch"/>

 </providers>

 </boostingManager>

 ...

 </sitecore>

</configuration>

Rules for Boost

 Default value for Boost is 1

 Values greater than 1 push the results to the top.

 Values less than 1 drag the results to the bottom (this is not often used).

4.5.1 Field Level Boosting

Field level boosting is resolved within the indexing.resolveFieldBoost pipeline that has the

following processors enabled:

 <processor type="Sitecore.ContentSearch.Pipelines.ResolveBoost.

 ResolveFieldBoost.SystemFieldFilter, Sitecore.ContentSearch"/>

 <processor type="Sitecore.ContentSearch.Pipelines.ResolveBoost.

 ResolveFieldBoost.FieldDefinitionItemResolver, Sitecore.ContentSearch"/>

 <processor type="Sitecore.ContentSearch.Pipelines.ResolveBoost.

 ResolveFieldBoost.StaticFieldBoostResolver, Sitecore.ContentSearch"/>

The SystemFieldFilter processor makes sure that the feature ignores all the system fields —

whose names start with “__”. This ensures that the impact on performance of the indexing operation
is minimized.

The FieldDefinitionItemResolver takes the instance of the

Sitecore.Data.Fields.Field and resolves the Field Definition Item that is expected to provide

the boost value.

Once the template definition item is resolved, the final processor, StaticFieldBoostResolver is

fired which simply reads the boost value out of the Field Definition Item, which is referred to as “static
field boost”.

To activate the Indexing section with the Boost Value field, on the View tab toggle the Standard
Fields checkbox:

Out of the box, the Field Level Boosting feature is only enabled for static boost resolution. You can
enable the Rule-Based Boosting for fields yourself. For more information about this, see the Item
Level Boosting section.

4.5.2 Item Level Boosting

Item level boosting is resolved within the indexing.resolveItemBoost pipeline that has the

following processors enabled:

 <processor type="Sitecore.ContentSearch.Pipelines.ResolveBoost.

 ResolveItemBoost.ItemLocationFilter, Sitecore.ContentSearch">

 <includedLocations hint="list">

 <content>/sitecore/content</content>

 <media>/sitecore/media library</media>

 </includedLocations>

 </processor>

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 31 of 38

 <processor type="Sitecore.ContentSearch.Pipelines.ResolveBoost.

 ResolveItemBoost.StaticItemBoostResolver, Sitecore.ContentSearch"/>

 <processor type="Sitecore.ContentSearch.Pipelines.ResolveBoost.

 ResolveItemBoost.LocalRuleBasedItemBoostResolver, Sitecore.ContentSearch"/>

 <processor type="Sitecore.ContentSearch.Pipelines.ResolveBoost.

 ResolveItemBoost.GlobalRuleBasedItemBoostResolver, Sitecore.ContentSearch"/>

The ItemLocationFilter processor makes sure that only items in the specified locations are

processed by the pipeline. This ensures that the impact on performance of the indexing operation is
minimized. If you need to extend this list, make sure to use the syntax below

<includedLocations hint="list">

 <content>/sitecore/content</content>

 <media>/sitecore/media library</media>

 <custom>/sitecore/custom</custom>

</includedLocations>

The StaticItemBoostResolver processor simply reads the boost value out of the indexed item,

which is referred to as “static item boost”.

This value can also be set for all items based on the Sample Item template via the __Standard Values
facility:

To activate the Indexing section with the Boost Value field, on the View tab toggle the Standard
Fields checkbox:

The LocalRuleBasedItemBoostResolver and GlobalRuleBasedItemBoostResolver

processors execute Rule-Based Boosting for the indexed item. Both are executed in a similar fashion,
using the Rules Engine, with the difference being the location from where the boosting rules are
looked up. For more information, see the Rules Engine Cookbook.

The LocalRuleBasedItemBoostResolver picks up the rules from the Boosting Rules field in the

Indexing section:

The source of the Boosting Rules field is restricted to the following location where all boosting rules
are managed:

/sitecore/system/Settings/Indexing and Search/Boosting Rules

This set of boosting rules can also be set on the __Standard Values level, just as any other field
value.

The GlobalRuleBasedItemBoostResolver will process all boosting rules created under
/sitecore/system/Settings/Indexing and Search/Boosting Rules/Global Rules.

In this example, the boosting rule called “Item has new in title” will be executed for every item that is
being indexed. So it is important to keep absolutely necessary global boosting rules. Otherwise, this
could have a drastically negative impact on indexing time. In other words, use the local boosting rules
as much as possible.

For more information on how the boosting rules are evaluated, see the Rule-Based Boosting section.

4.5.3 Rule-Based Boosting

This feature is based on the Rules Engine allowing for easy creation and extension of boosting rules.
For more information, see the Rules Engine Cookbook.

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 32 of 38

In order to create a boosting rule, locate the following item:

/sitecore/system/Settings/Indexing and Search/Boosting Rules

First, you need to decide whether it’s a boosting rule that will be used locally per item or per template,
or it’s a global rule. Each has a designated location. For example, in order to create a new local item
rule, right click on the Item Rules folder and Insert a new Boosting Rule:

Let’s create a boosting rule that will boost all items in English language.

After the rule is created, click Edit Rule.

The Rule Set Editor dialog box contains a set of familiar conditions:

Select the where the item language compares to value rule from the list and set the macro as follows:

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 33 of 38

The action we need is called adjust boost by select:

When you click on the “select” macro the following dialog will appear where you can specify the boost
value. The boost value can be either a positive or negative whole number.

Once the boosting rule is saved, we need to associate it with either an item or a template.

4.5.4 Rule-Based Boosting for Fields

Since the Rule-Based Boosting for fields is not implemented out of the box, you can implement this
feature with very little development effort. See the Developer’s Guide to Item Buckets and Search for
more information.

4.5.5 Troubleshooting Boosting

For Rule-Based Boosting, one common reason why boosting may not be resolved properly is that the
boosting rule was not published to the target database.

For field level boosting, you have to make sure that the Field Definition Item was published as well.

Since this feature is used at indexing time, you have to make sure the item was re-indexed properly
for the new boosting values to be picked up. Depending on the Index Update Strategy of choice, this
could happen either immediately after an item is saved, on an interval basis or after publishing.

If the item or field level boosting efforts are not giving the desired result, the first thing you should do
is debug the boosting values by changing the logger level of the CrawlingLog from INFO to DEBUG:

 <logger name="Sitecore.Diagnostics.Crawling" additivity="false">

 <level value="DEBUG" />

 <appender-ref ref="CrawlingLogFileAppender" />

 </logger>

This will restart the application pool and generate a new CrawlingLog file.

Next time you force an item re-index, entries will be shown in the log file, which should provide you
with the necessary insight on what resolved boosting values are being set.

If the resolved item boost is not what you expect, the indexed item may pick it up from the Global
Rules container, or maybe the Local Boosting Rule is not evaluating properly.

If you do not see any entries about item boosting resolving in the Crawling Log, you can enable the
Verbose Logger component and review why the item is not being indexed.

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 34 of 38

Chapter 5 Pipelines

This chapter explains the pipeline processors that are used for search and indexing in
Sitecore CMS 7.0.

 Overview of pipeline processors

 Indexing.getDependencies pipeline

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 35 of 38

5.1 Pipelines Overview

The following list shows the pipelines that are invoked for search procedures:

contentSearch.stripQueryStringParameters

contentSearch.getContextIndex

contentSearch.getGlobalSearchFilters

contentSearch.getFacets

contentSearch.processFacets

contentSearch.queryWarmup

contentSearch.translateQuery

indexing.filterIndex.inbound

indexing.filterIndex.outbound

indexing.getDependencies

indexing.resolveFieldBoost

indexing.resolveItemBoost

More information about these pipeline processors are listed in this section.

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 36 of 38

5.2 contentSearch.queryWarmup

This pipeline is critical for the production environment, and allows specifying a list of raw
queries to be executed during Sitecore initialization. This early execution will make sure the
queries are cached, so the first visitor does not have to a delay. Be aware, that this pipeline will
have a negative effect on the application startup time. So it is recommended to use it only in a
production environment.

To enable this feature, in the App_Config/Include folder, remove.example from the

extension of the Sitecore.Buckets.WarmupQueries.config.example file.

To extend the list of queries, in the sitecore/search/warmup item, add more <query />

elements.

Sitecore CMS 7.0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 37 of 38

5.3 indexing.getDependencies Pipeline

This pipeline is designed to address issues when a search document is built from the data coming
from more than one item. Consider example with Item Cloning and two items. When the value of the
title field changes on the original item, all clones need to be notified and updated. Note that the
processors within the pipeline are responsible for the collection of the “indexing-dependent items”,
and that’s it. Once the pipeline returns, all “indexing-dependent items” will be processed and updated
within the index.

Please note that this processor is disabled by default and can be enabled if a particular solution uses
the Item Cloning feature.

5.3.1 How to Enable/Disable

The pipeline is executed from within each crawler if the crawler’s ProcessDependencies property

is set to true, which is the default. To disable this feature, add the following parameter to the

appropriate index under the <Configuration /> section.

<index id="content" ...>

 ...

 <Configuration type="...">

 <IndexAllFields>true</IndexAllFields>

 <ProcessDependencies>false</ProcessDependencies>

Alternatively, if the indexes don’t override default configuration with a local one (e.g., the
Configuration section is missing), you can also globally change this setting under

<DefaultIndexConfiguration />:

<DefaultIndexConfiguration type="...">

 <IndexAllFields>true</IndexAllFields>

 <ProcessDependencies>false</ProcessDependencies>

Note that if a particular index has its own “local” <Configuration /> section, this setting will need

to be defined there in order for this to take affect for a particular index. The indexes without local

configuration will use the setting from the <DefaultIndexConfiguration /> section.

5.3.2 Usage

This pipeline can be used for other scenarios as well, such as composite page design where child
pages are included into the search document of the parent item. This way you can insert an additional
processor that will contain the logic that determines whether the currently indexed item is a child item,
so the code can return the parent as “indexing-dependent item”.

This specific scenario would most likely be complemented by one or more custom Computed Fields
that would perform the reverse logic of reading the child pages and adding the content to the search
document created for the currently indexed item.

Each custom processor must implement

Sitecore.ContentSearch.Pipelines.GetDependencies BaseProcessor:

public abstract class BaseProcessor

 {

 public abstract void Process(GetDependenciesArgs args);

 }

The pipeline arguments represented by the GetDependenciesArgs class contain the instance of

the indexed item and the list of ItemUris for each indexing-dependent item.

This pipeline is defined within Sitecore.ContentSearch.config.

Sitecore CMS 7.0 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 38 of 38

5.3.3 How to troubleshoot

Consider enabling Verbose Logger to monitor whether this pipeline is triggered for a particular index.
If it is enabled and the Verbose Logger is on, you should see the following messages in Crawler log:

INFO [Index=content_index] UpdateDependents

content_index|sitecore://master/{604A57CD-5FF7-4A9B-AE27-3C962CBB9E3A}?lang=en&ver=1

// the dependent items will be updated below

INFO [Index=content_index] ItemUpdating content_index|sitecore://master/{4C9B6DFA-

A22F-4755-81D6-DAFE1AFDE58E}?lang=en&ver=1

INFO [Index=content_index] ItemUpdated content_index|sitecore://master/{4C9B6DFA-

A22F-4755-81D6-DAFE1AFDE58E}?lang=en&ver=1

INFO Setting Index Property 'content_index_LT-AS-CGSXDS1-

elbrus.local.net_last_updated'='20130116T202350'

For more information about verbose logging, see the section Verbose Logger.

	Chapter 1 Introduction
	1.1 Overview
	1.2 Maintaining Search Indexes in Sitecore

	Chapter 2 Configuring Search and Indexing
	2.1 Configuration Files
	2.1.1 Sitecore.ContentSearch Configuration File

	2.2 Default Index Configuration

	Chapter 3 Log Files
	3.1 Logging Search and Indexing Operations
	3.1.1 Verbose Logger

	3.2 Crawling Log
	3.3 Search Log

	Chapter 4 Index Management
	4.1 Rebuilding Indexes
	4.1.1 Rebuilding Search Indexes in Sitecore
	4.1.2 Rebuilding Search Indexes using Custom Code
	4.1.3 Rebuilding Search Indexes using Content Editor
	4.1.4 SwitchOnRebuildLuceneIndex
	How to activate
	Post-Activation-steps

	4.2 Index Property Store
	Configuration

	4.3 Index Dependent Html Cache Management
	4.4 Index Update Strategies
	4.4.1 RebuildAfterFullPublish Strategy
	Attaching to an index
	Recommendation

	4.4.2 OnPublishEndAsync Strategy
	Processing
	Attaching to an index
	Recommendation

	4.4.3 IntervalAsynchronous Strategy
	Processing
	Attaching to an index
	Recommendation

	4.4.4 Synchronous Strategy
	Processing
	Requirements
	Attaching to an index
	Recommendation

	4.4.5 RemoteRebuildStrategy
	Attaching to an index
	Recommendation

	4.4.6 Manual Strategy
	Attaching to an index
	Recommendation

	4.5 Boosting Search Results at Indexing Time
	Configuration
	4.5.1 Field Level Boosting
	4.5.2 Item Level Boosting
	4.5.3 Rule-Based Boosting
	4.5.4 Rule-Based Boosting for Fields
	4.5.5 Troubleshooting Boosting

	Chapter 5 Pipelines
	5.1 Pipelines Overview
	5.2 contentSearch.queryWarmup
	5.3 indexing.getDependencies Pipeline
	5.3.1 How to Enable/Disable
	5.3.2 Usage
	5.3.3 How to troubleshoot

