
Sitecore CMS 6.2 or later
Presentation Component XSL Reference Rev: 2013-10-04

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Sitecore CMS 6.2 or later

Presentation Component
XSL Reference
A Conceptual Overview for Developers

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 2 of 47

Table of Contents

Chapter 1 Introduction .. 4
Chapter 2 Basic XSL and XPath Constructs .. 5

2.1 XSL Overview .. 6
2.2 XML, XSL, and XPath Tokens .. 7
2.3 XSL Elements .. 9

2.3.1 The <xsl:variable> XSL Element ... 9
2.3.2 The <xsl:value-of> XSL Element ... 9
2.3.3 The <xsl:if> XSL Element ... 10
2.3.4 The <xsl:choose, <xsl:when>, and <xsl:otherwise> XSL Elements 10
2.3.5 The <xsl:for-each> XSL Element .. 10
2.3.6 The <xsl:sort> XSL Element ... 11
2.3.7 The <xsl:template> , <xsl:call-template>, and <xsl:with-param>, and <xsl:apply-
templates> XSL Elements... 11

2.4 XPath and XSL Functions... 12
2.4.1 The position() Function ... 12
2.4.2 The last() Function.. 12
2.4.3 The current() Function .. 12
2.4.4 The document() Function .. 12
2.4.5 The concat() Function ... 12
2.4.6 The translate() Function .. 13
2.4.7 The true() Function ... 13
2.4.8 The false() Function .. 13
2.4.9 The not() Function .. 13
2.4.10 The count() Function ... 13
2.4.11 The contains() Function .. 13

Chapter 3 The Sitecore XML Structure .. 14
3.1 Working with Items ... 15

3.1.1 Item Attributes .. 15
3.1.2 Item Fields ... 16

3.2 XPath Navigation ... 17
3.2.1 Specific Items ... 17

The Context Item: $sc_currentitem .. 17
The Data Source Item : $sc_item .. 17
The Context Element .. 17
The Current Element ... 17
Item Variables Using XPath ... 18
Item Variables Using sc:item() ... 18
Pass Items to XSL Renderings Using the <xsl:param> XSL Element 18

3.2.2 Item References ... 18
3.2.3 Implicit Relationships (XPath Axes) .. 19

The Self Axis ... 20
The Child Axis ... 20
The Parent Axis .. 21
The ancestor and ancestor-or-self Axes .. 21
Descendants and Recursion ... 22

3.3 Selecting Items... 24
3.3.1 How to Select Items Based on a Specific Data Template .. 24
3.3.2 How to Select Items with a Version in the Context Language .. 24
3.3.3 How to Select Items that Have Children .. 24

Chapter 4 XSL and XPath with Sitecore .. 25
4.1 The Sitecore XSL Boilerplate File ... 26
4.2 XSL Error Management .. 28
4.3 Working with Fields .. 29

4.3.1 File Drop Area Fields .. 30
4.4 Overview of XSL Extension Controls and Methods ... 31

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 3 of 47

4.5 Sitecore XSL Extension Controls .. 32
4.5.1 Common Attributes ... 32

The field Attribute .. 32
The select Attribute ... 32
The show-title-when-blank Attribute ... 32
The disable-web-editing Attribute .. 32
Arbitrary Attributes .. 32

4.5.2 The Sitecore XSL Extension Controls ... 32
The <sc:date> XSL Extension Control ... 32
The <sc:editFrame> XSL Extension Control .. 33
The <sc:dot> XSL Extension Control ... 33
The <sc:html> XSL Extension Control ... 33
The <sc:image> XSL Extension Control .. 34
The <sc:link> XSL Extension Control... 35
The <sc:memo> XSL Extension Control .. 36
The <sc:sec> XSL Extension Control .. 36
The <sc:text> XSL Extension Control .. 37
The <sc:disableSecurity> XSL Extension Control .. 38
The <sc:enableSecurity> XSL Extension Control ... 38
The <sc:wordStyle> XSL Extension Control .. 38

4.6 Sitecore XSL Extension Methods.. 39
4.6.1 The sc Namespace : The Sitecore.Xml.Xsl.XslHelper Class .. 39

The sc:feedUrl() XSL Extension Method .. 39
The sc:field() XSL Extension Method ... 39
The sc:fld() XSL Extension Method ... 39
The sc:item() XSL Extension Method... 40
The sc:path() XSL Extension Method .. 40
The sc:GetMediaUrl() XSL Extension Method.. 41
The sc:pageMode() XSL Extension Method ... 41
The sc:IsItemOfType() XSL Extension Method .. 41
The sc:SplitFieldValue() XSL Extension Method .. 41
The sc:formatdate() XSL Extension Method .. 42
The sc:ToLower() XSL Extension Method.. 42
The sc:trace() XSL Extension Method ... 42
The sc:qs() XSL Extension Method ... 42
The sc:random() XSL Extension Method ... 42

4.6.2 Additional XSL Extension Method Classes .. 42
The dateutil Namespace : Sitecore.DateUtil .. 43
The stringutil Namespace : Sitecore.StringUtil ... 43
The mainutil Namespace : Sitecore.MainUtil.. 43
The sql Namespace : Sitecore.Xml.Xsl.SqlHelper .. 43

Chapter 5 Custom XSL Extension Libraries .. 44
5.1 Custom XSL Extension Methods .. 45

5.1.1 How to Add Methods to the sc Namespace ... 45
5.1.2 How to Access Properties of an XSL Extension Method Library Object 45
5.1.3 XSL Extension Method Examples ... 45

GetHome() — Return a Sitecore.Data.Items.Item .. 45
GetRandomSiblings() — Return Multuple Values Using XML .. 46

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 4 of 47

Chapter 1

Introduction

This document provides an overview of common XML, XSL, and XPath concepts and
syntax as used in Sitecore XSL renderings.1 Sitecore developers and designers
should read this document before implementing XSL renderings.

This document begins with an overview of XSL and a description of basic XSL and
XPath constructs. This document then describes the Sitecore XML structure that
most XSL renderings process. This document next discusses XSL and XPath in the
Sitecore context before explaining how to implement custom .NET extensions to XSL.

This document contains the following chapters:

 Chapter 1 — Introduction

 Chapter 2 — Basic XSL and XPath Constructs

 Chapter 3 — The Sitecore XML Structure

 Chapter 4 — XSL and XPath with Sitecore

 Chapter 5 — Custom XSL Extension Libraries

1 For more information about XSL, see http://www.w3.org/Style/XSL/. For more information about
XML, see http://www.w3.org/XML/. For more information about XPath, see
http://www.w3.org/TR/xpath. For more information about XSL renderings, see the Presentation
Component Reference manual at
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Reference.aspx. For
information about troubleshooting XSL renderings, see the Presentation Component Troubleshooting
Guide at
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Troubleshooting%2
0Guide.aspx.

http://www.w3.org/Style/XSL/
http://www.w3.org/XML/
http://www.w3.org/TR/xpath
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Reference.aspx
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Troubleshooting%20Guide.aspx
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Troubleshooting%20Guide.aspx

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 5 of 47

Chapter 2

Basic XSL and XPath Constructs

This chapter provides an overview of basic XML, XSL, and XPath concepts and
syntax.

This chapter begins with an overview of XSL, and then describes specific XML, XSL,
and XPath tokens. This chapter then documents common XSL elements before
discussing XPath and XSL functions.

This chapter contains the following sections:

 XSL Overview

 XML, XSL, and XPath Tokens

 XSL Elements

 XPath and XSL Functions

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 6 of 47

2.1 XSL Overview

XSL is a declarative programming languages intended for transforming XML data sources into other
formats, including HTML, text, other XML, or even binary formats.

XML is a tag-based, hierarchical data store similar to HTML markup, but with stricter syntax and
greater flexibility in structure and content. XSL is a dialect of XML. XSL files are XML files that contain
elements that XSL transformation engines recognize.

XSL renderings access an XML representation of a Sitecore database. For more information about
the XML representation of a Sitecore database, see Chapter 3, The Sitecore XML Structure.

The XSL context element is the location of the XSL transformation engine in an XML document. For
more information about the context element, see the section The Context Element.

XSL code uses XPath statements to select nodes in the XML document. For more information about
XPath, see the sections XML, XSL, and XPath Tokens and XPath Navigation.

An XSL template is a block of code, similar to a procedure or function. You can invoke XSL templates
by name, and you can invoke XSL templates by selecting nodes in the XML document that match
specific criteria. For more information about XSL templates, see the section The <xsl:template> ,
<xsl:call-template>, and <xsl:with-param>, and <xsl:apply-templates> XSL Elements.

XPath statements include implicit and explicit use of axes. Axes are directions for traversing the XML
document. For more information about axes, see the section Implicit Relationships (XPath Axes).

Important
ASP.NET supports XSL 1.0. ASP.NET, and hence Sitecore, does not support XSL 1.1 or XSL 2.0.
When researching XSL syntax, avoid constructs that are specific to XSL 1.1 or XSL 2.0.

Important

XSL looping constructs index elements starting with position 1 rather than 0.

Note
You can use ASP.NET exclusively in favor of XSL. 2 ASP.NET provides a superset of the features
available to XSL. Use .NET where XSL or XPath syntax is unwieldy, where XSL code is difficult to
manage, where XSL performance is poor, and for components that involve significant logic.

Note
This document focuses on extensions to XSL for working with Sitecore content. Consult external
documentation for more information on XML, XSL, and XPath.3

2 For more information about the advantages and disadvantages of XSL and .NET rendering
technologies, see the Presentation Component Reference manual at
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Reference.aspx, the
Presentation Component Cookbook at
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Cookbook.aspx,
and the Presentation Component API Cookbook at
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20API%20Cookbook.a
spx.
3 Sitecore recommends the book XSLT: Programmer’s Reference, by Michael Kay
(http://www.wrox.com/WileyCDA/WroxTitle/productCd-0764543814.html).

http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Reference.aspx
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Cookbook.aspx
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20API%20Cookbook.aspx
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20API%20Cookbook.aspx
http://www.wrox.com/WileyCDA/WroxTitle/productCd-0764543814.html

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 7 of 47

2.2 XML, XSL, and XPath Tokens

This document provides further detail about the tokens summarized in the following table, which
commonly appear in XSL renderings.

Token Meaning

. A single dot character represents the self axis, which is the current
location of the XSL transformation engine in an XML document (also
known as the context element). XSL assumes the self axis; @id,

./@id, and self::@id all select the attribute named id of the context

element. Synonym: self.

.. Two dot characters represent the parent axis, which contains the parent
element of the context element. Synonym: parent.

/ The slash character is the path operator, representing the root of the

XML document (/) and separates elements from its attributes (./@id)

and child elements (./item). Synonym: child.

// Two slash characters represent the descendant axis, which selects all

descendants of the context element. Synonym: descendant.

@ The at character specifies an attribute. For example, @key selects the

attribute named key.

* The star character matches any element. For example, /* selects the

root element of any XML document.

$ The dollar sign character indicates a named parameter or variable,
which can be a simple value or a location in the XML document. For
example, $sc_currentitem represents the context item.

[] The square bracket characters indicate an XPath predicate, which filter

a selection of elements. For example, ./item selects all children of the

context element; ./item[@template='templatename'] selects the

children of the context element that are based on the template named
templatename.

:: Two colons represent the axis resolution operator, which separates an
axis name from other tokens.

& XML-escaped ampersand (“&”).

< XML-escaped left angle bracket (“<”).

> XML-escaped right angle bracket (“>”).

" XML-escaped quote (").

' XML-escaped apostrophe (“'”).

&####; XML-escaped character specified by hexadecimal value.

and Logical and operator.

or Logical or operator.

* The star character is a wildcard that can select any node in the XML
document.

Important
To optimize performance, avoid using any variant of the descendant axis.

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 8 of 47

Note
XML supports only the five named character entities listed above. In XSL, you cannot use other
named entities as you would in HTML, such as . Instead, use the corresponding numerical

entity, such as .4

4 For a table mapping text entity codes to the corresponding numerical equivalents, see
http://www.webmonkey.com/reference/Special_Characters.

http://www.webmonkey.com/reference/Special_Characters

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 9 of 47

2.3 XSL Elements

This section provides an overview of XSL elements commonly used in Sitecore XSL renderings. XSL
elements use the xsl namespace.

2.3.1 The <xsl:variable> XSL Element

The <xsl:variable> XSL element creates a named variable. For example, each of the following

will create the variable $content representing the /Sitecore/Content item (an <item> element

in the XML document that represents a Sitecore database).

<xsl:variable name="content" select="/item[@key='sitecore']/item[@key='content']" />

<xsl:variable name="content" select="/*/item[@key='content']" />

<xsl:variable name="content" select="sc:item('/sitecore/content',.)" />

The first statement uses a fully-qualified XPath statement to select an element.

The second statement uses a wildcard to select a child of the root element.

The third statement uses a .NET XSL extension method to select the element at the specified path.

If you create a variable that represents a Sitecore item, you can retrieve values from that item, iterate
over its children, or perform other operations on the item. The following example creates a variable
named $content, and then iterates its children.

<xsl:variable name="content" select="sc:item('/sitecore/content',.)" />

<xsl:for-each select="$content/item">

 Child: <xsl:value-of select="@name" />

</xsl:for-each>

Avoid the overhead of variables when possible. Store IDs instead of elements, and when necessary,
reference <item> elements directly instead of using variables. For example, the following example

achieves the same result as the previous example, without using a variable.

<xsl:for-each select="sc:item('/sitecore/content',.)/item">

 Child: <xsl:value-of select="@name" />

</xsl:for-each>

Note
You cannot change the value of an XSL variable. You can sometimes work around this issue by
passing variables as parameters to recursive XSL templates. For more information about XSL
templates, see the section The <xsl:template> , <xsl:call-template>, and <xsl:with-param>, and
<xsl:apply-templates> XSL Elements.

2.3.2 The <xsl:value-of> XSL Element

The <xsl:value-of> XSL element retrieves a value. You can use <xsl:value-of> to write a
value to the output stream. For example, to write the raw value of the field named FieldName to the
output stream:

<xsl:value-of select="sc:fld('FieldName',$sc_currentitem)" />

You can use <xsl:value-of> to populate a variable using a named template:

<xsl:template name="GetContentID">

 <xsl:value-of select="sc:item('/sitecore/content',.)/@id" />

</xsl:template>

...

<xsl:variable name="contentid">

 <xsl:call-template name="GetContentID" />

</xsl:variable>

You disable escaping of XML special characters using the disable-output-escaping attribute.

For example, you can disable output escaping when you process a URL that contains multiple query
string parameters separated by ampersand characters.

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 10 of 47

<xsl:value-of

 select="sc:fld('FieldName', $sc_currentitem)" disable-output-escaping="yes" />

Unless you set disable-output-escaping to yes, the XSL transformation engine encodes

special characters in the source value. For example, the system outputs & for any ampersand

(“&”) characters in the source value.

2.3.3 The <xsl:if> XSL Element

The <xsl:if> XSL element invokes the enclosed code if the condition specified by the test

attribute is True.

Because XSL treats Null and empty strings as False, a common shortcut to check whether a field
exists and contains a value is to check whether the sc:fld() XSL extension method returns True.

<xsl:if test="sc:fld('FieldName',$sc_currentitem)">

 <!-- FieldName exists and contains a value in the specified item-->

</xsl:if>

Note

XSL does not include elements such as <xsl:elseif> or <xsl:else>. For multiple conditions,

use <xsl:choose> as described in the section The <xsl:choose, <xsl:when>, and <xsl:otherwise>

XSL Elements.

2.3.4 The <xsl:choose, <xsl:when>, and <xsl:otherwise> XSL
Elements

The <xsl:choose> element processes the contents of the first <xsl:when> element with a test

condition that evaluates to True, or the contents of the <xsl:otherwise> element if no test

evaluates to True.

<xsl:variable name="random" select="sc:random(10)" />

<xsl:choose>

 <xsl:when test="$random > 6">

 <!--random is greater than 6-->

 </xsl:when>

 <xsl:when test="$random > 3">

 <!--random is greater than three but less than or equal to 6-->

 </xsl:when>

 <xsl:otherwise>

 <!--random is less than or equal to 3-->

 </xsl:otherwise>

</xsl:choose>

Note
For each <xsl:choose> element, the system will process the segment of code contained in only

one <xsl:when> element or the <xsl:otherwise> element. If there is no <xsl:otherwise>

element, and none of the test conditions evaluate to True, then the system will not process any code

within the <xsl:choose> element.

2.3.5 The <xsl:for-each> XSL Element

The <xsl:for-each> XSL element iterates over zero or more elements as specified by the XPath

expression in the select attribute. Within each iteration of the <xsl:for-each> element, the

context element (“.”) contains the selected element.

The following example iterates over the children of the context item, outputting the name of each:

<xsl:for-each select="$sc_currentitem/item">

 <xsl:value-of select="@name" />

</xsl:for-each>

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 11 of 47

2.3.6 The <xsl:sort> XSL Element

The <xsl:sort> XSL element sorts a list of elements, such as within <xsl:for-each>. For more

information about <xsl:for-each>, see The <xsl:for-each> XSL Element.

The following example sorts the children of the context item in descending order by a date field value.

<xsl:for-each select="$sc_currentitem/item">

 <xsl:sort select="sc:fld('__updated',.)" order="descending" />

 <xsl:value-of select="@name" />

</xsl:for-each>

You can reverse the default sort using the @sortorder attribute:

<xsl:for-each select="$sc_currentitem/item">

 <xsl:sort select="@sortorder" order="descending" />

 <xsl:value-of select="@name" />

</xsl:for-each>

Note
By default, items appear in XML in the same order that they appear in the content tree.

2.3.7 The <xsl:template> , <xsl:call-template>, and <xsl:with-param>,
and <xsl:apply-templates> XSL Elements

The <xsl:template> XSL element encapsulates a segment of XSL code, similar to a method,

procedure, or function in other languages. The XSL transformation engine may write the output
generated by the content of an <xsl:template> element to the output stream, or encase that

output in an XSL variable. In XSL, the term template refers to a segment of XSL code contained
within an <xsl:template> element.

If you invoke a template using <xsl:call-template>, then the XSL transformation engine writes

the output of the template to the output stream. For example:

<xsl:template name="TemplateName">

 <xsl:value-of select="$sc_currentitem/@template" />

</xsl:template>

<xsl:call-template name="TemplateName" />

Alternatively, you can put the output of a template in a variable:

<xsl:variable name="VariableName">

 <xsl:call-template name="TemplateName" />

</xsl:variable>

You can pass parameters to an XSL template using the <xsl:param> and <xsl:with-param>

XSL elements, and you can specify default values for parameters using the select attribute of

<xsl:param>.

<xsl:template name="TemplateName">

 <xsl:param name="ParamName" select="$sc_currentitem" />

 <xsl:value-of select="$ParamName/@template" />

</xsl:template>

...

<xsl:call-template name="TemplateName">

 <xsl:with-param name="ParamName" select="." />

</xsl:call-template>

Note
The context element within an XSL template is the context element from the calling context.

You can also use the <xsl:apply-templates> XSL element to invoke XSL templates using XPath

statements to select items.

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 12 of 47

2.4 XPath and XSL Functions

This section provides an overview of functions available in XPath statements used in XSL
programming.

2.4.1 The position() Function

The position() function returns the location of the element in a list. For more information about the

position() function, see the section The ancestor and ancestor-or-self Axes.

A common pattern is to compare position() to last() to determine whether a loop has reached

the last element, such as to insert a spacing element between output elements. For example, the
following code outputs an HTML line break (
) after each link to a child item of the context item

except for the last link in the list.

<xsl:for-each select="$sc_currentitem/item">

 <sc:link><sc:text field="FieldName" /></sc:link>

 <xsl:if test="position() != last()">

 </xsl:if>

</xsl:for-each>

2.4.2 The last() Function

The last() function returns the number of elements in a list. For an example using the last()

function, see the previous section, The position() Function.

2.4.3 The current() Function

The current() function represents the current element in the XML document For more information

about the current() function, see The Current Element.

2.4.4 The document() Function

The document() function retrieves an external XML source, such as an RSS feed. The following

sample code reformats an RSS feed.

<xsl:variable name="rssurl" select="'http://www.asp.net/news/rss.ashx'" />

<xsl:variable name="rss" select="document($rssurl)" />

<xsl:if test="$rss">

 <xsl:for-each select="$rss//item">

 <a>

 <xsl:attribute name="href">

 <xsl:value-of select="link"/>

 </xsl:attribute>

 <xsl:value-of select="title"/>

 <p>

 <xsl:value-of select="description" />

 </p>

 </xsl:for-each>

</xsl:if>

Note
You can store values such as the URL of the RSS feed in a field of an item:

<xsl:variable name="rssurl" select="sc:fld('FieldName', $sc_currentitem)" />

2.4.5 The concat() Function

The concat() function concatenates strings.

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 13 of 47

<xsl:variable name="VariableName" select="concat('A', 'B')" />

<xsl:variable name="VariableName" select="concat(concat('A', 'B'), 'C')" />

<xsl:variable name="VariableName" select="concat(concat(concat('A', 'B'), 'C'), 'D')"

/>

2.4.6 The translate() Function

The translate() function converts characters to alternate characters or removes characters from a

value. For example, the following outputs the raw value of the field named FieldName after replacing

hyphen characters (“-”) with underscore characters (“_”):

<xsl:value-of select="translate(sc:fld('FieldName', $sc_currentitem), '-', '_')" />

You can use the translate() function to convert a string representation of a date or date and time

to a number. Sitecore stores date and time values using the ISO date format corresponding to the
.NET format pattern yyyyMMddTHHmmss, where T is a literal character that separates the date portion

of the value from the time portion. To convert a date in this ISO format to a number for comparisons or
other purposes, you can remove the T character using the translate() function.

<xsl:variable name="updated"

 select="translate(sc:fld('__updated', $sc_currentitem), 'T', '')" />

2.4.7 The true() Function

The true() function returns a True value. You can use this function to inverse a value.

2.4.8 The false() Function

The false() function returns a false value. You can use this function to inverse a value.

2.4.9 The not() Function

The not() function negates a condition. The following condition is never true:

<xsl:if test="not(true())">

 <!--the XSL transformation engine will never invoke this code.-->

</xsl:if>

2.4.10 The count() Function

The count() function returns the number of elements in a list. For example, to determine if the

context item has more than five child <item> elements:

<xsl:if test="count($sc_currentitem/item) > 5">

2.4.11 The contains() Function

The contains() function returns True if the first argument contains the second argument.

You can use the contains() function to determine if a list of IDs, such as that stored in selection

field, contains the ID of a specific item. For example, to determine if the FieldName field in the context
item contains the ID of the context item:

<xsl:variable name="ids" select="sc:fld('FieldName', $sc_currentitem/@id)" />

<xsl:if test="contains($ids, $sc_currentitem/@id)">

 <!--The specified field in the context item contains the ID of the context item-->

</xsl:if>

You can implement this condition without creating a variable:

<xsl:if test="contains(sc:fld('FieldName', $sc_currentitem), $sc_currentitem/@id)">

 <!--The specified field in the context item contains the ID of the context item-->

</xsl:if>

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 14 of 47

Chapter 3

The Sitecore XML Structure

This chapter provides an overview of the XML representation of a Sitecore database
that XSL renderings use.

This chapter begins by describing how to access items in the XML document. This
chapter then explains how to use XPath to navigate around the XML document and
select items in that document.

This chapter contains the following sections:

 Working with Items

 XPath Navigation

 Selecting Items

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 15 of 47

3.1 Working with Items

XSL renderings access an XML document that represents the structure of a Sitecore database.

Important
Use your knowledge of the information architecture and the Sitecore XSL extensions described in this
document rather than investigating the raw XML representation of a Sitecore database.

The XML document consists of a hierarchy of <item> elements. Each <item> element corresponds

to an item in the Sitecore content tree. Each <item> element has attributes and contains a collection

of elements that define the fields of the item.

Each <item> can contain any number of child <item> elements. The XML document contains

<item> elements nested as deeply as you nest items in the content tree.

The root <item> element in the XML document represents the /Sitecore item in the content tree.

The following XML fragment includes some of the data in the default /Sitecore and

/Sitecore/Content items. All <item> elements have a similar structure.

<item name="sitecore" key="sitecore" id="{11111111-1111-1111-1111-111111111111}"

 tid="{C6576836-910C-4A3D-BA03-C277DBD3B827}"

 mid="{00000000-0000-0000-0000-000000000000}"

 sortorder="100" language="en" version="1" template="root"

 parentid="{00000000-0000-0000-0000-000000000000}">

 <fields>

 <field tfid="{5DD74568-4D4B-44C1-B513-0AF5F4CDA34F}" key="__created by"

 type="text" />

 <!-- additional field definition elements -->

 <field tfid="{9C6106EA-7A5A-48E2-8CAD-F0F693B1E2D4}" key="__read only"

 type="checkbox" />

 </fields>

 <item name="content" key="content" id="{0DE95AE4-41AB-4D01-9EB0-67441B7C2450}"

 tid="{E3E2D58C-DF95-4230-ADC9-279924CECE84}"

 mid="{00000000-0000-0000-0000-000000000000}"

 sortorder="100" language="en" version="1" template="main section"

 parentid="{11111111-1111-1111-1111-111111111111}">

 <fields>

 <field tfid="{BADD9CF9-53E0-4D0C-BCC0-2D784C282F6A}" key="__updated by"

 type="text" />

 <!-- additional field definition elements -->

 </field>

 </fields>

 <!— item elements at this level represent children of /Sitecore/Content-->

 ...

 </item>

 <!-- additional item elements at this level represent siblings of /Sitecore/Content-

->

</item>

3.1.1 Item Attributes

Each <item> element has a specific set of attributes, including:

 @name: The name of the item.

 @key: The lowercase of the name of the item.

 @id: The ID of the item.

 @tid: The ID of the data template definition item associated with the item.

 @mid: The ID of the branch template or command template used to insert the item, or the null

GUID.

 @sortorder: The numerical sort order of the item relative to its sibling items.

 @language: The context language.

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 16 of 47

 @version: The version number of the item within the language.

 @template: The lowercase name of the data template associated with the item.

 @parentid: The ID of the parent of the item, or the null GUID for the root item.

Warning

For best performance, always compare the values of @id attributes to determine whether two

elements represent the same item. For example, test whether $sc_currentitem/@id =

$sc_item/@id, not whether $sc_currentitem = $sc_item.

3.1.2 Item Fields

Each <item> element in the XML representation of a Sitecore database contains a <fields>

element. Each <fields> element contains a number of <field> elements. Each <field> element

represents a field definition in the data template associated with the item, or one of the base
templates associated with that template, including the standard template.

Note

For efficiency, the XML representation of a Sitecore database does not contain field values; <field>

elements do not contain values. For information about XSL extensions that you can use to access
field values, see the sections The <sc:date> XSL Extension Control, The <sc:html> XSL Extension
Control, The <sc:image> XSL Extension Control, The <sc:link> XSL Extension Control, The
<sc:memo> XSL Extension Control, The <sc:text> XSL Extension Control, The <sc:wordStyle> XSL
Extension Control, The sc:fld() XSL Extension Method, and The sc:field() XSL Extension Method.

Each <field> element has a specific set of attributes including:

 @tfid: The ID of the data template field definition item.

 @key: The lowercase name of the data template field definition item.

 @type: The lowercase name of the data template field data type.

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 17 of 47

3.2 XPath Navigation

You can use XPath to navigating through the XML document available to XSL renderings.

3.2.1 Specific Items

XSL renderings define parameters that you can use to access items.

The Context Item: $sc_currentitem

The context item is the item that corresponds to the path in the URL requested by the client. The
context item is the default data source for all renderings for which you do not specify a data source.
The $sc_currentitem variable represents the <item> element that corresponds to the context

item in the XML representation of a Sitecore database.

The Data Source Item : $sc_item

A rendering can retrieve data from its data source item. The $sc_item variable represents the data

source item for an XSL rendering. If the developer does not specify a data source item for a
rendering, the default data source item is the context item, and $sc_item and $sc_currentitem

are the same item.

XSL rendering logic begins with the first <xsl:template> XSL element in the code file. The XSL

rendering boilerplate file uses the select attribute of the <xsl:apply-templates> XSL element

to set the context element to the data source item and invoke the XSL template with mode attribute

main:

<xsl:template match="*">

 <xsl:apply-templates select="$sc_item" mode="main"/>

</xsl:template>

<xsl:template match="*" mode="main">

 <!--the context element is the data source item-->

 <!--developers typically insert code here-->

</xsl:template>

The Context Element

The context element is the location of the XSL transformation engine within an XML document. The
context element is the location from which the XSL transformation engine interprets relative XPath
statements. The dot character (“.”) represents the context element. XSL constructs such as

<xsl:for-each> change the context element, but do not change the context item

($sc_currentitem).

The Current Element

The current() function returns the current element, which you can use in XPath predicates to

access the context element at the current scope. Within the predicate of an XPath statement, the
current element is the element that was the context element at the point that the XSL transformation
engine began evaluating the XPath statement. Otherwise, the current element and the context
element are often the same element. Consider the following example:

<xsl:for-each select="$sc_item/item">

 <xsl:choose>

 <xsl:when test="$sc_currentitem/ancestor-or-self::item[@id=current()/@id">

 <!—the context element is the iteration item or one of its descendants-->

 </xsl:when>

 </xsl:choose>

</xsl:for-each>

The outer <xsl:for-each> element iterates over the <item> elements that are children of the data

source item. Within the outer <xsl:for-each>, the context element is a child of the data source

item, and the current() function returns that item. The <xsl:when> element tests if the context

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 18 of 47

item ($sc_currentitem) is or has an ancestor that is the context element (current()), for

instance to determine if the context item is within that section of the information architecture. Within
the predicate, the context element is the <item> element on the ancestor-or-self axis, while the

current element remains the child of the data source item.

Important
It is important to understand the difference between the context item, the context element, and the
current element, which may all represent the same <item>. The context item is the item requested by

the browser. The context element is the location of the XML transformation engine in an XML
document. The context item is the default context element for renderings that do not have an explicit
data source. The context element is generally an <item> in an XML document that represents a

Sitecore database, but could be any type of element and could be in a different XML document. The
current element refers to the context element except in the predicate of looping constructs, where the
current element is the element that was the context element at the opening of the loop.

Item Variables Using XPath

You can reference any item using a fully-qualified XPath statement. For instance, you can create a
variable representing the /Sitecore/Content item using the following XSL construct:

<xsl:variable name="content" select="/item[@key='sitecore']/item[@key='content']" />

Note
Because an XML document always has exactly one root element, you can shorten this expression
using the star character (“*”), or wildcard, to match that root element:

<xsl:variable name="content" select="/*/item[@key='content']" />

Item Variables Using sc:item()

You can access an item by passing its path or ID to the sc:item() XSL extension method:

<xsl:variable name="content" select="sc:item('/sitecore/content',.)"/>

<xsl:variable name="content"

 select="sc:item('{110D559F-DEA5-42EA-9C1C-8A5DF7E70EF9}',.)" />

<xsl:for-each select="$content/item">

 <xsl:value-of select="@name" />

</xsl:for-each>

Pass Items to XSL Renderings Using the <xsl:param> XSL Element

You can pass additional item paths or IDs to XSL renderings using the <xsl:param> XSL element,

and use the sc:item() XSL extension method to select the corresponding items.5 Add rendering

parameter definitions in the header of the XSL rendering near the default parameter definitions.

<xsl:param name="ParamNamePathOrID"><!--default parameter value--></xsl:param>

<xsl:variable name="VariableName" selet="sc:item($ParamNamePathOrID, .)" />

3.2.2 Item References

An item can contain fields that contain the IDs of other Sitecore items, representing references from
one item to another.

If a field contains a single ID, then you can use the sc:fld() XSL extension method to retrieve that

ID, and pass that ID to the sc:item() XSL extension method to select the corresponding <item>

element.

5 For more information about passing parameters to renderings, see the Presentation Component
Reference manual at
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Reference.aspx.

http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Reference.aspx

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 19 of 47

<xsl:variable name='IDVariableName' select='sc:fld('FieldName", $sc_item)' />

<xsl:if test="$IDVariableName">

 <xsl:variable name='ItemVariableName' select='sc:item($IDVariableName, $sc_item)' />

 <xsl:if test="$ItemVariableName">

 <xsl:value-of select="$ItemVariableName/@name" />

 </xsl:if>

</xsl:if>

If a field can contain a list of IDs referencing multiple items, then you can use the
sc:SplitFieldValue() XSL extension method to iterate over that ordered list.

<xsl:for-each select="sc:SplitFieldValue('FieldName',.) ">

 <xsl:for-each select="sc:item(text(),.)">

 <xsl:value-of select="@name" />

 </xsl:for-each>

</xsl:for-each>

Note
Use <xsl:for-each> to process the item returned by the sc:item() XSL extension function sets

context element, resulting in shorter, more flexible, and more consistent syntax.

Tip

You can use the sc:SplitFieldValue() XSL extension method to process a field that contains

the ID of a single item as well as fields that contain the IDs of multiple items.

3.2.3 Implicit Relationships (XPath Axes)

Each <item> element in an XML document that represents a Sitecore database has a number of

implicit relationships with other <item> elements in that document through the various XPath axes.

The following diagram, in which J represents the context element, provides an overview of the various
XPath axes.6

6 Published with permission of Crane Softwrights Ltd., http://www.CraneSofwrights.com.

http://www.cranesofwrights.com/

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 20 of 47

The Self Axis

The self axis contains only the context element. In XPath expressions, the dot character (“.”)

represents the self axis. The self axis is the default axis if you do not explicitly specify an axis.

Developers typically reference the context element implicitly or explicitly rather than using the self

axis explicitly. The following three constructs are equivalent, with the shortest being generally
preferable.

<xsl:value-of select="@id" />

<xsl:value-of select="./@id" />

<xsl:value-of select="self::*/@id" />

The XPath statement in the select attribute in the first example does not specify an axis, and

therefore implicitly retrieves the value of an attribute of the context element. The second example
explicitly references the context element (.), and uses the path operator (/) to select a named

attribute of that item. The third example explicitly matches any element (*) on the self axis (self::),

and retrieves the value of the attribute named id from any such element.

The Child Axis

The child axis contains the children of the context element. In XPath expressions, the path operator

(“/”) represents the child axis.

Each <item> element can contain nested <item> elements representing the children of the item. To

exclude the <fields> element when selecting the children of an item, explicitly select child elements

named item. In each of the following XPath statements, the token item matches <item> elements.

self::

root

ancestor-or-self::

ancestor::

parent::

preceding-sibling::

descendant::

following-sibling::

child::

preceding:: following::

descendant-or-self::

(1) not shown: attribute and

namespace nodes and axes

(2) letter order indicates nodes

in document order

A

B

G I

ED

C

F

H K

M

L

J

N

P Q

W YX

ZT U

V

SR

O

Copyright © Crane Softwrights Ltd.

http://www.CraneSoftwrights.com

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 21 of 47

<xsl:for-each select="./item">

<xsl:for-each select="item">

<xsl:for-each select="./child::item" />

<xsl:for-each select="child::item">

The first example matches <item> elements that are children of the context element. The second

example matches the same items, demonstrating that XPath defaults to processing the child axis from
the context element. The third example matches <item> elements on the child axis of the context

element. The fourth example matches <item> elements on the child axis of the context element.

You can use a construct such as the following to determine whether an item has children:

<xsl:if test="$sc_currentitem/item">

 <!--the context item has child items-->

</xsl:if>

The Parent Axis

The parent axis includes the parent of the context element. Except for the root element, each

element in an XML document has a parent element. In XPath expressions, two dots (“..”) represent

the parent axis.

The following examples test whether the name of the data template associated with the parent item of
the context element is homepage.

<xsl:if test="./parent::item[@template='homepage']">

<xsl:if test="parent::item[@template='homepage']">

<xsl:if test="parent::*[@template='homepage']">

<xsl:if test="./../[@template='homepage']">

<xsl:if test="../[@template='homepage']">

Note
The following expression determines not whether the parent item uses the specified data template,
but whether that parent item has a child that uses that data template.

<xsl:if test="../item[@template='homepage']">

The ancestor and ancestor-or-self Axes

The ancestor axis returns the ancestors of the context element in document order. Document order

refers to the order of elements in the XML document, from the root element down. The ancestor-

or-self axis returns the context element and its ancestors in document order.

In the diagram shown in the section Implicit Relationships (XPath Axes), if the context item is S, then
the ancestor axis includes A, F, J, and Q, while the ancestor-or-self axis includes A, F, J, Q,

and S.

XSL renderings often use the ancestor and ancestor-or-self axes to process the items that

enclose another item or to determine whether an item is a descendant of another item, such as to
generate a breadcrumb or highlight a navigational element corresponding to an item that contains the
context item.

Within the select attribute of the <xsl:for-each> element, the position() function references

the index of the element in the list of elements. For the ancestor and ancestor-or-self axes,

this is the opposite of XML document order. In the predicate of the select attribute of the

<xsl:for-each> element, the last() function returns the number of elements in the list of

elements to process.

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 22 of 47

The ancestor axis is often useful in breadcrumbs. Breadcrumbs should never include links to A and

F, which represent the /Sitecore and /Sitecore/Content items. Breadcrumbs typically include

the name of the context item, but that step in the breadcrumb is typically not a link. The ancestor

axes excludes the context item. To exclude A and F, ignore the two furthest elements from the context
item:

<xsl:for-each select="$sc_currentitem/ancestor::item[position() < last() - 1]">

You can use the ancestor-or-self axis to determine if an item is an ancestor of another, or is

itself that item. For instance, a rendering might iterate over the sections beneath the home item,
generating links to each section and highlighting the section containing the current page.

<xsl:for-each select="$home/item[@template='section']">

 <xsl:choose>

 <xsl:when test="$sc_currentitem/@id=@id">

 <!--the client has requested this section item-->

 </xsl:when>

 <xsl:when test="$sc_currentitem/ancestor-or-self::item[@id=current()/@id">

 <!--the client has requested an item that is a descendant of this item-->

 </xsl:when>

 <xsl:otherwise>

 <!--the client has not requested this item or any of its descendants-->

 </xsl:otherwise>

 </xsl:choose>

</xsl:for-each>

You can use of the ancestor-or-self axis to retrieve field values from an item or its nearest
ancestor that contains a value for that field. The following code processes the field named FieldName
in the context item or its nearest ancestor that defines a value for that field.

<sc:image field="FieldName"

 select="$sc_currentitem/ancestor-or-self::item[sc:fld('FieldName',.,'src')][1]" />

The token $sc_currentitem/ancestor-or-self::item causes the XSL transformation engine

to evaluate the predicate against the context element and each of its ancestor <item> elements. The

first predicate restricts the selection to only those <item> elements that define a value for the

FieldName field ([sc:fld('FieldName',.,'src')]). The second predicate ([1]) selects the

matching <item> element that is closest to the context item. The <sc:image> control generates an

HTML tag using the specified field value in that item.

Descendants and Recursion

The descendant axis includes all descendants of an element, recursively, in document order. The

descendant-or-self axis includes the context element and all of its descendants, recursively in

document order.

In the diagram shown in the section Implicit Relationships (XPath Axes), if the context element is J,

then the descendant axis includes the K, L, M, N, O, P, Q, R, and S elements, while the

descendant-or-self axis includes the J, K, L, M, N, O, P, Q, R, and S elements.

Recursion, including the descendant and descendant-or-self axes, can be expensive, but can

also be effective, especially for small amounts of data. The following example generates a data-driven
site map.

<xsl:call-template name="SiteMapStep" />

...

<xsl:template name="SiteMapStep">

 <xsl:param name="level" select="1" />

 <xsl:param name="start" select="$home" />

 <ul class="{concat('sitemap',$level)}">

 <xsl:for-each select="$start/item">

 <sc:link><sc:text field="title" /></sc:link>

 <xsl:if test="item">

 <xsl:call-template name="SiteMapStep">

 <xsl:with-param name="level" select="$level+1" />

 <xsl:with-param name="start" select="." />

 </xsl:call-template>

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 23 of 47

 </xsl:if>

 </xsl:for-each>

</xsl:template>

Warning

For performance, avoid excessive use of the descendant and descendant-or-self axes

including the // construct, especially to process large numbers of items. Structure the information

architecture and user search indexes and other features to limit the number of items processed by
any single piece of code.

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 24 of 47

3.3 Selecting Items

This section provides techniques for selecting items to process.

3.3.1 How to Select Items Based on a Specific Data Template

You can use the @template attribute in the XPath predicate to process items that are based on a

specific data template.

<xsl:for-each select="$sc_item/item[@template='templatename']">

Important

The @template attribute contains the data template key, which is the lowercase of the name of the

data template.

To process items based on one or more templates, consider the XPath contains() function.

<xsl:for-each select="$sc_item/item[contains('!templatename1!templatename2!',

 concat(concat('!',@template),'!')]">

To process items based on data templates that share a common base template:

<xsl:for-each select="$sc_currentitem/item[sc:IsItemOfType('basetemplate',.)]">

To process items based on data templates that share a common base template, including items
based directly on that base template:

<xsl:for-each select="$sc_currentitem/item[@template='basetemplate' or

 sc:IsItemOfType('basetemplate',.)]">

3.3.2 How to Select Items with a Version in the Context Language

In some sites supporting multiple languages, CMS users do not translate every item before
publishing. To select items that have a version for the context language, check for a value in the
creation date field. For example:

<xsl:for-each select="$sc_currentitem/item[sc:fld('__created',.)]">

 <!--the context element is an item with a version in the context language-->

</xsl:for-each>

3.3.3 How to Select Items that Have Children

To select items that have children, include a predicate that specifies the existence of child <item>

elements. For example, to process all the children of the context item that have at least one child item:

<xsl:for-each select="$sc_currentitem/item[item]">

 <!--the context element, a child of the context item, has at least one child item-->

</xsl:for-each>

To process all children of the context item that have at least one child item based on or that inherits
from a specific data template that has a version for the context language:

<xsl:for-each select="$sc_currentitem/item[item[@template='basetemplate' or

 sc:IsItemOfType('basetemplate',.)) and sc:fld('__created',.)]]">

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 25 of 47

Chapter 4

XSL and XPath with Sitecore

This chapter describes considerations and techniques for developers working with
XSL renderings, including XSL, XPath, and Sitecore XSL extensions written in .NET.

This chapter first describes the boilerplate file that you can use to create new XSL
renderings. This chapter then documents how Sitecore manages errors in XSL
renderings. The following section describes how to access fields in Sitecore items.
The remaining chapters describe XSL extension methods and XSL extension
controls.

This chapter contains the following sections:

 The Sitecore XSL Boilerplate File

 XSL Error Management

 Working with Fields

 Overview of XSL Extension Controls and Methods

 Sitecore XSL Extension Controls

 Sitecore XSL Extension Methods

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 26 of 47

4.1 The Sitecore XSL Boilerplate File

When you use the create a new XSL rendering in the Developer Center, Sitecore duplicates the XSL
rendering boilerplate file, which provides a starting point for the new code.

The boilerplate file for new XSL renderings contains the following lines.

<?xml version="1.0" encoding="UTF-8"?>

This line indicates that the file contains XML. XSL rendering files contain XSL code. XSL is a dialect
of XML; all XSL files are XML files.

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:sc="http://www.sitecore.net/sc"

 xmlns:dot="http://www.sitecore.net/dot"

 exclude-result-prefixes="dot sc">

This line, which contains the XML root element of the XSL file, identifies the file contents as XSL
code. Similar to how ASP.NET maps tag prefixes to assemblies containing controls, XSL maps
namespace identifiers to URLs containing XSL processing facilities. The xsl namespace exposes the

XSL language. Sitecore by default defines the sc and dot namespaces, which correspond to .NET

classes in assemblies installed by Sitecore. The
/configuration/sitecore/xslExtension/extension elements in web.config provide

signature for each class, effectively mapping XSL namespaces to .NET assemblies. For more
information about .NET XSL extensions, see the Chapter 5, Custom XSL Extension Libraries.

<xsl:output method="html" indent="no" encoding="UTF-8" />

This line indicates that the rendering outputs markup using the HTML syntax, which does not require
closing elements for <hr> and other elements. For an XHTML site, the value of the method attribute

should be xml, resulting in output such as <hr /> or <hr></hr>.

<xsl:param name="lang" select="'en'"/>

<xsl:param name="id" select="''"/>

<xsl:param name="sc_item"/>

<xsl:param name="sc_currentitem"/>

These lines define several parameters that Sitecore passes to all XSL renderings:

 $lang: The context language.

 $id: The GUID of the data source item for the rendering.

 $sc_item: The data source item for the rendering.

 $sc_currentitem: The context item.

<!--<xsl:variable name="home" select="sc:item('/sitecore/content/home',.)" />-->

<!--<xsl:variable name="home" select="/*/item[@key='content']/item[@key='home']" />-->

<!--<xsl:variable name="home"

 select="$sc_currentitem/ancestor-or-self::item[@template='site root']" />-->

These lines demonstrate three ways to access the home item of the context site.7

<xsl:template match="*">

 <xsl:apply-templates select="$sc_item" mode="main"/>

</xsl:template>

These lines set the context element to the data source of the rendering ($sc_item) before invoking

the following XSL template with a value of main for the mode attribute.

<xsl:template match="*" mode="main">

</xsl:template>

Developers generally add code within this <xsl:template> element.

7 For an example of using logic to determine the home item of the context site, see the
GetHomeItem() method at http://trac.sitecore.net/XslHelper/browser/Trunk/Xml/Xsl/XslHelper.cs.

http://trac.sitecore.net/XslHelper/browser/Trunk/Xml/Xsl/XslHelper.cs

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 27 of 47

</xsl:stylesheet>

This line closes the <xsl:stylesheet> root element.

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 28 of 47

4.2 XSL Error Management

If the layout engine encounters a syntax error or an exception while processing an XSL rendering, it
embeds information about the error in the output stream, which is visible to Web clients.8

The layout engine does not compile XSL renderings until runtime. XSL does not support compile-time
error detection.

Extensions to XSL written in .NET can throw exceptions. If an XSL rendering calls an extension
method that throws an exception, then the layout engine adds information about that exception to the
output stream, which is visible to Web clients. This output appears after any output generated by the
rendering prior to the exception. XSL renderings do not write to the output stream after encountering
an exception.

8 For more information about handling errors with Sitecore, including how to override error
management, see the Presentation Component API Cookbook at
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20API%20Cookbook.a
spx.

http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20API%20Cookbook.aspx
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20API%20Cookbook.aspx

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 29 of 47

4.3 Working with Fields

The following table summarizes the Sitecore XSL extension controls and methods that you can use to
access the various data template field types in XSL renderings as described further in the following
sections of this document.

Field Types Construct Notes

Attachment
Icon
IFrame
Integer
Internal Link
Layout
Number
Password
Security
Template Field Source
Tristate

N/A Do not use XSL to process
these field types.

Checkbox
Droplist
File
Grouped Droplist

sc:fld() You can use the sc:fld()

XSL extension method to
process these types of fields.

Checklist
Multilist
Treelist
TreelistEx

sc:SplitFieldValue()

and sc:item()
You can use the
sc:SplitFieldValue() XSL

extension method with the
sc:item() XSL extension

method to retrieve the items
referenced by a field that allows
the user to select multiple
items.

Date
DateTime

<sc:date> You can use the <sc:date>

XSL extension control to
process Date and Datetime
fields.

Droplink
Droptree
Grouped Droplink
Internal Link

sc:fld() and
sc:item()

You can use the sc:item()

XSL extension method with the
sc:fld() XSL extension

method to retrieve the item
referenced by a field that allows
the user to select a single item.

File Drop Area (FDA) sc:fld() and
sc:item()

You can use the sc:fld()

XSL extension method to
retrieve mediaid attribute of

the FDA field and the
sc:item() XSL extension

method to access the children
of that item. For more
information about accessing
FDA fields, see the following
section, File Drop Area Fields.

General Link <sc:link> You can use the <sc:link>

XSL extension control to
process General Link fields.

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 30 of 47

Field Types Construct Notes

Image <sc:image> You can use the <sc:image>

XSL extension control to
process Image fields.

Multi-Line Text <sc:memo> You can use the <sc:memo>

XSL extension control to
process Multi-Line text fields.

Rich Text Editor (RTE) <sc:html> You can use the <sc:html>

XSL extension control to
process Rich Text Editor fields.

Single-Line Text <sc:text> You can use the <sc:text>

XSL extension control to
process Single-Line Text fields.

Word Document <sc:text> You can use the <sc:text>

XSL extension control to
process Word Document fields.

Note
You can use the sc:fld() and sc:field() XSL extension methods to access any type of field.

Note

You can use the <sc:wordstyle> XSL extension element to embed an HTML <style> element

containing the CSS styles required to support each field of type Word Document. For more
information about the <sc:wordStyle> XSL extension control, see the section The <sc:wordStyle> XSL
Extension Control.

Tip
To view the value stored in a field, such as the attributes available for an Image, File, or General Link
field, view raw field values.9

4.3.1 File Drop Area Fields

You can implement code based on the following example that accesses the media items in the FDA
File Drop Area (FDA) field named FileDopAreaField.

<xsl:variable name="folderid"

 select="sc:fld('filedropareafield', $sc_item, 'mediaid')" />

<xsl:if test="$folderid and sc:item($folderid, $sc_item)/item">

 <xsl:for-each select="sc:item($folderid, $sc_item)/item">

 <xsl:value-of select="@name"/>

 </xsl:for-each>

</xsl:if>

The $folderid variable contains the GUID of the attribute named mediaid in the FDA field named
FileDropAreaField in the data source for the rendering. If the value of the FileDropAreaField is not
empty, and the corresponding item has children, then this code generates links to each of those
children.

9 For instructions to access raw field values, see the Client Configuration Cookbook at
http://sdn.sitecore.net/Reference/Sitecore%206/Client%20Configuration%20Cookbook.aspx.

http://sdn.sitecore.net/Reference/Sitecore%206/Client%20Configuration%20Cookbook.aspx

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 31 of 47

4.4 Overview of XSL Extension Controls and Methods

XSL extensions expose .NET logic to XSL renderings. There are two types of XSL extensions: XSL
extension controls and XSL extension methods.

XSL extension controls are XML elements in XSL renderings that correspond to .NET classes. For
example, the <sc:text> XSL extension control corresponds to the

Sitecore.Web.UI.XslControls.Text .NET class. XSL extension controls are standalone

elements in the XSL code.

XSL extension methods correspond to methods in a .NET class. For example, the sc:fld() XSL

extension method corresponds to the fld() method of the Sitecore.Xml.Xsl.XslHelper class

represented by the sc namespace. XSL extension methods appear within attribute values and cannot

stand alone as XML elements.

In general, XSL extension methods are easier to write, more flexible to use, and expose more
functionality than XSL extension controls more efficiently. XSL extension controls result code syntax
more consistent with XSL.

Note
Unless otherwise specified, all XSL extensions controls and methods work with the current version of
each item in the context language.

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 32 of 47

4.5 Sitecore XSL Extension Controls

Sitecore provides several .NET XSL extension controls that you can use to simplify various rendering
functions.

4.5.1 Common Attributes

Several of the XSL extension controls described in this chapter accept the common attributes
described in the following sections.

The field Attribute

The field attribute specifies the name of a field to process.

<sc:text field="FieldName" />

The select Attribute

The select attribute specifies the item on which the control operates. If you do not specify a value

for the select attribute, the control operates on the context element.

<sc:text field="FieldName" select="$sc_item" />

The show-title-when-blank Attribute

If the field value is empty and the show-title-when-blank attribute is true, then the layout

engine outputs the name of the data template field before the inline editing control in the Page Editor.
This can help CMS users locate empty fields.

<sc:text field="FieldName" show-title-when-blank="true" select="$sc_currentitem" />

The disable-web-editing Attribute

If the disable-web-editing attribute is true, the layout engine disables inline editing for the field

in the Page Editor. You can also disable inline editing by passing a third parameter to the
sc:field() XSL extension method. The following two statements are equivalent.

<sc:text field="FieldName" disable-web-editing="true" select="$sc_currentitem" />

<xsl:value-of select="sc:field('FieldName', $sc_currentitem, 'disable-web-

editing=true')"

 disable-output-escaping="yes" />

Arbitrary Attributes

The <sc:image> and <sc:link> XSL extension controls pass any unrecognized attributes to the

HTML element they generate.

<sc:image border="1" ...

<sc:link class="ClassName" ...

4.5.2 The Sitecore XSL Extension Controls

This section describes the individual Sitecore XSL extension controls.

Note

The <sc:html>, <sc:memo>, and <sc:text> XSL extension controls are very similar. The only

significant implementation difference between these XSL extension controls is that <sc:memo>

supports the line-breaks attribute.

The <sc:date> XSL Extension Control

The <sc:date> XSL extension control outputs the value of a Date or Datetime field.

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 33 of 47

The <sc:date> XSL extension control requires the following attribute:

 field: The name of the Date or Datetime field. For more information about the field attribute,

see the preceding section, The field Attribute.

The <sc:date> XSL extension control accepts the following optional attributes:

 format: The .NET format pattern.10

 select: The item containing the Date or Datetime field. For more information about the

select attribute, see the preceding section, The select Attribute.

 disable-web-editing: Enables or disables inline editing. For more information about the

disable-web-editing attribute, see the preceding section, The disable-web-editing
Attribute.

The sc:formatdate() XSL extension method provides functionality equivalent to that of the

<sc:date> XSL extension control.

<sc:date field="FieldName" format="d" select="$sc_currentitem" />

<xsl:value-of select="sc:formatdate(sc:fld("FieldName",$sc_currentitem),'d')" />

The <sc:editFrame> XSL Extension Control

The <sc:editFrame> XSL extension control inserts an edit frame.11

Note

This document does not describe the <sc:editFrame> XSL extension control.

The <sc:dot> XSL Extension Control

The <sc:dot> XSL extension control generates a content marker in the Page Editor. Content

markers support editing content while browsing a virtual copy of the web site.

The <sc:dot> XSL extension control does not require any attributes.

The <sc:dot> XSL extension control accepts the following optional attribute:

 select: The item to associate with the content marker. For more information about the select

attribute, see the preceding section, The select Attribute.

The dot:Render() XSL extension method provides functionality equivalent to that of the <sc:dot>

XSL extension control.

<sc:dot select="$sc_currentitem" />

<xsl:value-of select="dot:Render($sc_currentitem)" />

Important
Content markers are obsolete. When possible, enable inline editing instead of using content markers.

The <sc:html> XSL Extension Control

The <sc:html> XSL extension control outputs the value of a field of type Rich Text Editor or Word

Document.

10 For information about .NET date format patterns, see http://msdn.microsoft.com/en-
us/library/97x6twsz.aspx.
11 For more information about edit frames, see the Client Configuration Reference at
http://sdn.sitecore.net/Reference/Sitecore%206/Client%20Configuration%20Cookbook.aspx.

http://msdn.microsoft.com/en-us/library/97x6twsz.aspx
http://msdn.microsoft.com/en-us/library/97x6twsz.aspx
http://sdn.sitecore.net/Reference/Sitecore%206/Client%20Configuration%20Cookbook.aspx

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 34 of 47

The <sc:html> XSL extension control requires the following attribute:

 field: The name of the Rich Text field. For more information about the field attribute, see

the preceding section, The field Attribute.

The <sc:html> XSL extension control accepts the following optional attributes:

 select: The item containing the Rich Text field. For more information about the select

attribute, see the preceding section, The select Attribute.

 disable-web-editing: Enables or disables inline editing. For more information about the

disable-web-editing attribute, see the preceding section, The disable-web-editing

Attribute.

 show-title-when-blank: Output the field title if the field value is blank. For more

information about the show-title-when-blank attribute, see the preceding section, The

field Attribute.

The sc:field() and sc:fld() XSL extension methods provide functionality equivalent to that of

the <sc:html> XSL extension control. For more information about the sc:field() XSL extension

method, see the section The sc:field() XSL Extension Method. For more information about the

sc:fld() XSL extension method, see the section The sc:fld() XSL Extension Method.

<sc:html field="FieldName" select="$sc_currentitem" />

<xsl:value-of select="sc:field('FieldName',$sc_currentitem)"

 disable-output-escaping="yes" />

<sc:html field="FieldName" select="$sc_currentitem" disable-web-editing="true" />

<xsl:value-of select="sc:fld('FieldName',$sc_currentitem)" />

The <sc:image> XSL Extension Control

The <sc:image> XSL extension control outputs an HTML image () element using the image

referenced in an Image field.

The <sc:image> XSL extension control requires the following attribute:

 field: The name of the Image field. For more information about the field attribute, see the

preceding section, The field Attribute.

The <sc:image> XSL extension control accepts the following optional attributes:

 select: The item containing the Image field. For more information about the select

attribute, see the preceding section, The select Attribute.

 w: Width in pixels.

 h: Height in pixels.

 mw: Maximum width in pixels.

 mh: Maximum height in pixels.

 la: Language (defaults to context language).

 vs: Version (defaults to latest version).

 db: Database name (defaults to context database).

 bc: Background color (defaults to black).

 as: Allow stretch (defaults to false, set to 1 for true).

 sc: Scale by floating point number (.25 = 25%).

 thn:Thumbnail (set to 1 for true).

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 35 of 47

 disable-web-editing: Enables or disables inline editing. For more information about the

disable-web-editing attribute, see the preceding section, The disable-web-editing

Attribute.

Note

Attributes of the <sc:image> XSL extension control that affect height and width do not correspond to

the HTML height and width attributes of the element. Image manipulation such as resizing

occurs on the server to minimize network traffic to transfer the image from the server to the client.

The <sc:image> XSL extension control passes unrecognized attributes to the element it

generates.

<sc:image field="FieldName" select="$sc_currentitem" border="1" thn="1"/>

The sc:field() XSL extension method provides functionality equivalent to the <sc:image> XSL

extension control. For more information about the sc:field() XSL extension method, see the
section The sc:field() XSL Extension Method.

<xsl:value-of select="sc:field('FieldName', $sc_currentitem)"

 disable-output-escaping="yes" />

You can use the sc:fld() XSL extension method to access individual properties of an Image field.

<img src="{sc:fld('FieldName', $sc_currentitem, 'src')}"

 alt="{sc:fld('FieldName', $sc_currentitem, 'alt')}" />

The <sc:link> XSL Extension Control

The <sc:link> XSL extension control generates an HTML anchor (<a>) element.

The <sc:link> XSL extension control does not require any attributes.

The <sc:link> XSL extension control accepts the following optional attributes:

 field: The name of the Image field. For more information about the field attribute, see the

preceding section, The field Attribute.

 select: The item containing the field. For more information about the select attribute, see

the preceding section, The select Attribute.

 text: The text content that the user will click in the HTML <a> tag.

 disable-web-editing: Enables or disables inline editing. For more information about the

disable-web-editing attribute, see the preceding section, The disable-web-editing

Attribute.

By default, the <sc:link> XSL extension control generates a link to the item represented by the

context element. To link to a specific item, specify that item using the select attribute. To link as

specified in a field of type General Link in the context element, pass the name of the field to the
control using the field attribute. To link as specified in a General Link field in a specific item, pass

both the select and the field attributes.

You can specify the text of the link using the text attribute, or the text value of the <sc:link>

element. If you specify both, the layout engine ignores the text attribute, even if the text value

evaluates to an empty string.

<sc:link text="click here" />

<sc:link text="this is ignored">this is output</sc:link>

The <sc:link> XSL extension control passes unrecognized attributes to the <a> element that it

generates.

<sc:link class="CSSClass" />

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 36 of 47

You can use the sc:fld() XSL extension method to access the individual properties of a General

Link field. For more information about the sc:fld() XSL extension method, see the section The
sc:fld() XSL Extension Method.

<xsl:if test="sc:fld('FieldName',$sc_currentitem,'linktype')='mailto'">

Note

In the Page Editor, using sc:field() as a parameter to <sc:link> XSL extension control may

result in a link looking incorrect because of including markup. To prevent this, use sc:fld() instead:

<sc:link select="$home">

<xsl:value-of select="sc:fld('Title',$home)" />

</sc:link>

Also, you can pass the following attribute to <sc:link> to disable inline editing in the Page Editor:

disable-web-editing="true"

The <sc:memo> XSL Extension Control

The <sc:memo> XSL extension control outputs the value of a Multi-Line Text field.

The <sc:memo> XSL extension control requires the following attribute:

 field: The name of the Multi-Line Text field. For more information about the field attribute,

see the preceding section, The field Attribute.

The <sc:memo> XSL extension control accepts the following optional attributes:

 select: The item containing the Multi-Line Text field. For more information about the

select attribute, see the preceding section, The select Attribute.

 line-breaks: Replacement characters for line feeds in the Multi-Line Text field.

 disable-web-editing: Enables or disables inline editing. For more information about the

disable-web-editing attribute, see the preceding section, The disable-web-editing

Attribute.

 show-title-when-blank: Output the field title if the field value is blank. For more

information about the show-title-when-blank attribute, see the preceding section, The

show-title-when-blank Attribute.

The sc:fld() and sc:field() XSL extension methods provide functionality equivalent to that of

the <sc:memo> XSL extension control. For more information about the sc:field() XSL extension

method, see the section The sc:field() XSL Extension Method. For more information about the

sc:fld() XSL extension method, see the section The sc:fld() XSL Extension Method.

<sc:memo field="FieldName" select="$sc_currentitem" />

<xsl:value-of select="sc:field('FieldName',$sc_currentitem)"

 disable-output-escaping="yes" />

<xsl:value-of select="sc:fld('FieldName',$sc_currentitem)" />

<sc:memo field="FieldName" select="$sc_currentitem" line-breaks="
" />

The <sc:sec> XSL Extension Control

The <sc:sec> XSL extension control causes the XSL transformation engine to process the enclosed

segment of code if the context user has the designated access right to an item.

The <sc:sec> XSL extension control accepts the following attributes:

 require: Access right code.

 select: The item for which to evaluate the access right.

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 37 of 47

The require attribute supports the following access rights:

 item:admin: Administer access right.

 item:create: Create access right: item:create.

 item:delete: Delete access right.

 item:read: Read access right.

 item:rename: Rename access right.

 item:write: Write access right.

For example:

<sc:sec req="item:delete" select="$sc_currentitem">

 <sc:sec req="item:create" select="$sc_currentitem">

 <!--the context user has both delete and create access rights to the context item-

->

 </sc:sec>

</sc:sec>

The sc:HasRight() XSL extension method provides functionality equivalent to that of the

<sc:sec> XSL extension control.

<xsl:if test="sc:HasRight("item:delete",$sc_currentitem)">

The <sc:text> XSL Extension Control

The <sc:text> XSL extension control outputs the value of a Single-Line Text field or other simple

text field.

The <sc:text> XSL extension control requires the following attribute:

 field: The name of the field. For more information about the field attribute, see the

preceding section, The field Attribute.

The <sc:text> XSL extension control accepts the following optional attributes:

 select: The item containing the field. For more information about the select attribute, see

the preceding section, The select Attribute.

 disable-web-editing: Enables or disables inline editing. For more information about the

disable-web-editing attribute, see the preceding section, The disable-web-editing

Attribute.

 show-title-when-blank: Output the field title if the field value is blank. For more

information about the show-title-when-blank attribute, see the preceding section, The show-
title-when-blank Attribute.

 editormode: When editing an item that contains a field of type Word Document in the Page

Editor, if the value of the editormode attribute is inline, then the editor appears

embedded within the page rather than as a popup window.

 editorwidth: When the value of the editormode attribute is inline, the value of the

editorwidth attribute specifies the width of the inline editor in pixels. For example, 770px.

 editorheight: When the value of the editormode attribute is inline, the value of the

editorheight attribute specifies the height of the inline editor in pixels. For example,

450px.

The sc:fld() and sc:field() XSL extension methods provide functionality equivalent to that of

the <sc:text> XSL extension control.

<sc:text field="FieldName" select="$sc_currentitem" />

<xsl:value-of select="sc:fld('FieldName', $sc_currentitem)" />

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 38 of 47

<xsl:value-of select="sc:field('FieldName', $sc_currentitem)"

 disable-output-escaping="yes" />

The <sc:disableSecurity> XSL Extension Control

The <sc:disableSecurity> XSL extension control causes the XSL transformation engine to

disable security checks while evaluating the enclosed XSL code, causing that code to execute in the
security context of an administrative user.

The <sc:disableSecurity> XSL extension control does not accept any attributes.

For more information about the <sc:disableSecurity> XSL extension control, see the following

section, The <sc:enableSecurity> XSL Extension Control.

The <sc:enableSecurity> XSL Extension Control

The <sc:enableSecurity> XSL extension control causes the XSL transformation engine to apply

security while evaluating the enclosed XSL code, causing that code to execute in the security context
of the context user.

Because security applies by default, you do not need to use <sc:enableSecurity> except within

<sc:disableSecurity>. For example:

<!--the system enforces security while processing this segment of code-->

<sc:disableSecurity>

 <!--the system ignores security while processing this segment of code-->

 <sc:enableSecurity>

 <!--the system enforces security while processing this segment of code-->

 </sc:enableSecurity>

 <!--the system ignores security while processing this segment of code-->

</sc:disableSecurity>

<!--the system enforces security while processing this segment of code-->

The <sc:enableSecurity> XSL extension control does not accept any attributes.

The sc:EnterSecurityState() and sc:ExitSecurityState() XSL extension methods

provide functionality equivalent to that of the <sc:disableSecurity> and

<sc:enableSecurity> XSL extension controls.

<xsl:value-of select="sc:EnterSecurityState(false())" />

 <!--the system ignores security while processing this segment of code-->

<xsl:value-of select="sc:ExitSecurityState()" />

The <xsl:value-of> elements call the XSL extension methods, but generate no output.

The <sc:wordStyle> XSL Extension Control

The <sc:wordStyle> XSL extension control generates an HTML <style> element containing the

CSS styles associated with the content of a field of type Word Document.

The <sc:wordStlye> XSL extension control requires the following attribute:

 field: The name of the Word Document field. For more information about the field attribute,

see the preceding section, The field Attribute.

The <sc:wordStyle> XSL extension control accepts the following optional attributes:

 select: The item containing the Word Document field. For more information about the select

attribute, see the preceding section, The select Attribute.

For example, to embed the styles and content of the Word Document field named WordField in the
context item:

<sc:wordstyle field="WordField" select="$sc_currentitem" />

<sc:text field="WordField" select="$sc_currentitem" />

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 39 of 47

4.6 Sitecore XSL Extension Methods

This section describes some of the Sitecore XSL extension methods available to XSL renderings.

4.6.1 The sc Namespace: The Sitecore.Xml.Xsl.XslHelper Class

This section describes the most frequently used Sitecore XSL extension methods, which are in the
Sitecore.Xml.Xsl.XslHelper class represented by the sc namespace.

Important
The Sitecore.Xml.Xsl.XslHelper class exposes a number of XSL extension methods not

documented in this section. For more information about these methods, see the Sitecore API
documentation.12

The sc:feedUrl() XSL Extension Method

The sc:feedUrl() XSL extension method returns the RSS URL of an item.13 The first parameter is

the RSS item. The second parameter indicates whether the RSS feed requires Sitecore
authentication, in which case query string parameters in the URL contain encrypted user identification
information.

For example, you can generate a link to the RSS URL of the item identified by the variable named
$item with syntax such as the following:

<xsl:variable name="rssUrl" select="sc:feedUrl($item, false())" />

<xsl:if test="$rssUrl">

 RSS

</xsl:if>

The sc:field() XSL Extension Method

The sc:field() XSL extension method returns the value of a field and includes markup to support

inline editing if the user is inline editing in the Page Editor.

<xsl:value-of select="sc:field('FieldName',$sc_currentitem)"

 disable-output-escaping="yes" />

You can pass parameters, including those used to resize images, using a third parameter. For
example, to process an image field using parameters equivalent to the attributes supported by the
<sc:image> XSL extension control:

<xsl:value-of select="sc:field('FieldName', $sc_currentitem,

 'disable-web-editing=yes&thn=1&border=1')" disable-output-escaping="yes" />

The sc:fld() XSL Extension Method

The sc:fld()XSL extension returns the raw value of a field, or the value of an attribute within an

XML field value. The following example creates a variable using the value of a field in the context
item:

<xsl:variable name="VariableName" select="sc:fld('FieldName',$sc_currentitem)" />

A common use of sc:fld() is to determine if a Checkbox field is selected. A Checkbox field stores

the value 1 if the user selects the checkbox. Always check for this value to determine whether the

user has selected the checkbox.

12 For access to the Sitecore API documentation, see
http://sdn5.sitecore.net/Reference/Sitecore%206.aspx.
13 For more information about RSS, see the Client Configuration Cookbook at
http://sdn.sitecore.net/Reference/Sitecore%206/Client%20Configuration%20Cookbook.aspx and the
Content Author’s Cookbook at
http://sdn.sitecore.net/End%20User/Sitecore%206%20Cookbooks.aspx.

http://sdn5.sitecore.net/Reference/Sitecore%206.aspx
http://sdn.sitecore.net/Reference/Sitecore%206/Client%20Configuration%20Cookbook.aspx
http://sdn.sitecore.net/End%20User/Sitecore%206%20Cookbooks.aspx

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 40 of 47

<xsl:if test="sc:fld("FieldName",$sc_currentitem)!='1')">

 <!--checkbox field does not exist in context item or the user has not selected it-->

</xsl:if>

Certain types of fields, including Image, File, and General Link, represent their value using a single
XML element with a number of attributes. You can pass a third parameter to sc:fld() to retrieve the

value of a specific attribute. For example, to generate a link based on field of type File, you could use
the sc:fld() method to retrieve the src attribute from the field value:

<xsl:variable name="src" select="sc:fld('FieldName',$sc_currentitem,'src')" />

<xsl:if test="$src">

 <xsl:value-of select="concat('/',$src)" />

</xsl:if>

To access the media item referenced by a File field, use the sc:item() method to retrieve the item

referenced by the mediaid attribute.

<xsl:variable name="mediaid" select="sc:fld('FieldName',$sc_currentitem,'mediaid')" />

<xsl:if test="$mediaid">

 <xsl:variable name="mediaitem" select="sc:item($mediaid,$sc_currentitem)" />

 <xsl:if test="$mediaitem">

 <xsl:choose>

 <xsl:when test="sc:fld('title',$mediaitem)">

 <sc:text field="title" select="$mediaitem" />

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="$mediaitem/@name" />

 </xsl:otherwise>

 </xsl:choose>

 </xsl:if>

</xsl:if>

Important

The sc:fld() XSL extension method does not rewrite links to use friendly URLs, for example when

retrieving the value of a Rich Text field. To rewrite links, use the sc:field() XSL extension method
as described in the following section, The sc:item() XSL Extension Method.

The sc:item() XSL Extension Method

The sc:item() XSL extension method returns the <item> element corresponding to the ID or short

path specified by the first parameter.

<xsl:variable name="content" select="/item[@key='sitecore']/item[@key='content']" />

<xsl:variable name="content" select="sc:item('/sitecore/content',$sc_currentitem)"/>

<xsl:variable name="content"

 select="sc:item('{110D559F-DEA5-42EA-9C1C-8A5DF7E70EF9}',.)" />

<xsl:value-of select="$content/@name" />

Important
You must pass an element in the XML document containing the referenced item as the second
parameter to the sc:item() extension method.

You can determine if the referenced item exists and the context user has the item:read access right

to it by checking the value returned by the sc:item() XSL extension method. For example:

<xsl:variable name="content" select="sc:item('/sitecore/content',.)" />

<xsl:if test="$content">

 <xsl:value-of select="$content/@name" />

</xsl:if>

The sc:path() XSL Extension Method

The sc:path() XSL extension method returns the friendly URL of a content item.

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 41 of 47

The sc:GetMediaUrl() XSL Extension Method

The sc:GetMediaUrl() XSL extension method returns the friendly URL of a media item. Replace

the FieldName parameter in the sample code below with a valid field name for a field of Field Type

Image or File.

<xsl:variable name="mediaid" select="sc:fld('FieldName',$sc_currentitem,'mediaid')" />

<xsl:if test="$mediaid">

 <xsl:variable name="mediaitem" select="sc:item($mediaid,$sc_currentitem)" />

 <xsl:if test="$mediaitem">

 <xsl:value-of select="$mediaitem/@name" />

 </xsl:if>

</xsl:if>

Important

Sitecore does not prefix the URL of the media item with a slash (“/”) character automatically. This can

result in URLs that exceed browser or server limits. Prefix media URLs with slashe characters when
necessary.

The sc:pageMode() XSL Extension Method

The sc:pageMode() XSL extension method returns an XML structure indicating the client mode,

such as Preview, Page Editor, or the Debugger, with and without different features enabled. You can
use this information to output markup exposing different features in different modes. For more
information about using the page mode, see the Client Configuration Cookbook.14

The sc:IsItemOfType() XSL Extension Method

The sc:IsItemOfType() XSL extension method returns true if an item is based on a data template

that inherits from a specific base data template.

<xsl:if test="sc:IsItemOfType('basetemplate',$sc_currentitem)">

<xsl:if test="$sc_currentitem/@template='basetemplate'

 or sc:IsItemOfType('basetemplate',$sc_currentitem)">

Important

The sc:IsItemOfType() method returns false for items that inherit directly from the specified base

template. Both call the sc:IsItemOfType() XSL extension method and compare the template

name directly when necessary:

<xsl:if test="sc:IsItemOfType('basetemplate',$sc_currentitem)

 or $sc_currentitem/@template='basetemplate'">

The sc:SplitFieldValue() XSL Extension Method

The sc:SplitFieldValue() XSL extension method returns an XML structure containing the IDs of

the items selected in a selection field. You can use the sc:SplitFieldValue() XSL extension

method to process the values in a Tree, Multilist, Treelist, or other field allowing selection of zero or
more Sitecore items. For example:

<xsl:for-each select="sc:SplitFieldValue('FieldName',$sc_currentitem)">

 <xsl:for-each select="sc:item(text(),$sc_currentitem)">

 <xsl:value-of select="@name" />

 </xsl:for-each>

</xsl:for-each>

14 To access the Client Configuration Cookbook, see
http://sdn5.sitecore.net/Reference/Sitecore%206.aspx.

http://sdn5.sitecore.net/Reference/Sitecore%206.aspx

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 42 of 47

Note

The sc:SplitFieldValue() XSL extension method does not confirm the existence of items

corresponding to the IDs contained in the field value.

The sc:formatdate() XSL Extension Method

The sc:formatdate() XSL extension method returns a formatted string based on a date value

stored in the ISO format used by Sitecore. For more information about formatting dates, see the
previous sections The translate() Function and The <sc:date> XSL Extension Control.

<xsl:value-of select="sc:formatdate(sc:fld('FieldName',$sc_currentitem),'d')" />

The sc:ToLower() XSL Extension Method

The sc:ToLower() XSL extension method returns the lowercase value of a string. The following

condition is always true:

<xsl:if test="sc:ToLower($sc_currentitem/@name)=$currentitem/@key">

Important
XPath is case-sensitive. Always convert values to a consistent character case before comparison.

The sc:trace() XSL Extension Method

The sc:trace() XSL extension method writes a message to the trace log visible in the Sitecore

debugger. For example:

<xsl:value-of select="sc:trace(concat('Context element item path: ',sc:path(.)))" />

In this case, the <xsl:value-of> element generate no output, but calls the sc:trace() XSL

extension method to write a message to the trace.

The sc:qs() XSL Extension Method

The sc:qs() XSL extension method returns the value of a URL query string parameter.

<xsl:choose>

 <xsl:when

 test="sc:ToLower(sc:qs('ParameterName'))='true' or sc:qs('ParameterName')='1'">

 <!--URL query string parameter is true-->

 </xsl:when>

 <xsl:otherwise>

 <!--URL query string parameter is not true-->

 </xsl:otherwise>

</xsl:choose>

The sc:random() XSL Extension Method

The sc:random() XSL extension method returns a somewhat random integer as returned by

System.Random.Next(int).15 For example, to generate a number between one and ten:

<xsl:variable name="VariableName" select="sc:random(11)" />

4.6.2 Additional XSL Extension Method Classes

This section describes several additional classes that you can use as XSL extension method
libraries.16

15 For information about System.Random.Next(int), see http://msdn.microsoft.com/en-

us/library/system.random.next.aspx.
16 For more information about the Sitecore Application Programmer Interfaces, see
http://sdn5.sitecore.net/Reference/Sitecore%206.aspx.

http://msdn.microsoft.com/en-us/library/system.random.next.aspx
http://msdn.microsoft.com/en-us/library/system.random.next.aspx
http://sdn5.sitecore.net/Reference/Sitecore%206.aspx

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 43 of 47

Excluding content marker functionality, the only class containing XSL extension methods provided by
the default boilerplate file used to create XSL renderings is the Sitecore.Xml.Xsl.XslHelper

class represented by the sc namespace. This class contains the most frequently used XSL extension

methods.

To use additional extension libraries, update the XSL rendering header as shown for each additional
extension library.

The dateutil Namespace : Sitecore.DateUtil

You can use some of the methods in the Sitecore.DateUtil class as XSL extension methods.

xmlns:dateutil="http://www.sitecore.net/dateutil"

exclude-result-prefixes="dot sc dateutil"

Note
The sc namespace contains the most frequently used methods for manipulating dates.

The stringutil Namespace : Sitecore.StringUtil

While there are some methods for manipulating strings in Sitecore.Xml.Xsl.XslHelper, there

are additional helpful methods for manipulating strings in the Sitecore.StringUtil class that you

can use as XSL extension methods.

xmlns:stringutil="http://www.sitecore.net/stringutil"

exclude-result-prefixes="dot sc stringutil"

The mainutil Namespace : Sitecore.MainUtil

There are some miscellaneous methods in the Sitecore.MainUtil class that you can use as XSL

extension methods.

xmlns: mainutil ="http://www.sitecore.net/mainutil"
exclude-result-prefixes="dot sc mainutil"

The sql Namespace : Sitecore.Xml.Xsl.SqlHelper

There are some helpful methods for working with SQL databases in the
Sitecore.Xml.Xsl.Sqlhelper class that you can use as XSL extension methods.

xmlns:sql="http://www.sitecore.net/sql"

exclude-result-prefixes="dot sc sql"

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 44 of 47

Chapter 5

Custom XSL Extension Libraries

This chapter provides techniques for implementing custom .NET XSL extensions.

You can use custom XSL extensions:

 To perform resource-intensive operations.

 To increase readability of the code used for complex operations

 To access data in a system other than the current Sitecore database.

This chapter contains the following section:

 Custom XSL Extension Methods

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 45 of 47

5.1 Custom XSL Extension Methods

This section provides procedures for implementing custom XSL extension methods using .NET. You
can register your own XSL namespace containing custom XSL extension methods, or add methods to
the default sc namespace.

Tip
Consider adding the namespace definition to the boilerplate file used for XSL renderings.

5.1.1 How to Add Methods to the sc Namespace

To add methods to the sc namespace, override Sitecore.Xml.Xsl.XslHelper.

1. Create a class that inherits from Sitecore.Xml.Xsl.XslHelper.

2. In web.config, in the /configuration/sitecore/xslExtensions/extension

element with namespace http://www.sitecore.net/sc, replace the value of the type

attribute with the signature of your class. The sc namespace then exposes the methods in

your class as well as the methods in the Sitecore.Xml.Xsl.XslHelper base class.

<extension mode="on" type="Namespace.Class,Assembly"

 namespace="http://www.sitecore.net/sc" singleInstance="true" />

5.1.2 How to Access Properties of an XSL Extension Method Library
Object

To access properties of an XSL extension class library object, use explicit get_Property() and

set_Property() methods. For example:

<xsl:if test="get_PropertyName()">

 <xsl:value-of select="set_PropertyName('PropertyValue')" />

</xsl:if>

In this case, the <xsl:value-of> XSL element sets the property, and does not generate any

output.

5.1.3 XSL Extension Method Examples

This section contains examples of custom .NET XSL extension methods.

GetHome() — Return a Sitecore.Data.Items.Item

The boilerplate file for XSL renderings defines a variable named $home using an XPath statement.

This variable is invalid if you use an XSL rendering on a site that does not have
/Sitecore/Content/Home as its start item. You can use an XSL extension method to determine

the home item using logic rather than hard-coding a path.

First determine the home item for the site. Then use the
Sitecore.Configuration.Factory.GetItemNavigator() method to convert the

Sitecore.Data.Items.Item to the System.Xml.XPath.XPathNodeIterator representation

used by XSL renderings.

namespace Namespace.Xml.Xsl

{

 private Sitecore.Data.Items.Item GetHomeItem()

 {

 Sitecore.Data.Database db = Sitecore.Context.Database;

 Sitecore.Data.Items.Item home = database.GetItem(Sitecore.Context.Site.StartPath);

 return(home);

 }

 public class XslHelper

 {

 public Sitecore.Xml.XPath.ItemNavigator GetHome()

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 46 of 47

 {

 return(Sitecore.Configuration.Factory.CreateItemNavigator(GetHomeItem()));

 }

 public string GetHomeID()

 {

 return(GetHomeItem().ID.ToString());

 }

 }

}

Update the $home variable definition in XSL rendering and the boilerplate file used for new XSL

renderings.

<xsl:variable name="home" select="namespace:GetHome()" />

Note
It is generally more efficient to process a string than it is to process an XML structure. When possible,
use a method that returns an ID as a string instead of returning an item as a

System.Xml.XPath.XPathNavigator. For example, unless you are already using the $home

variable and just need to update the logic used to define that variable, avoid defining the $home

variable. When possible, use the GetHomeID() method instead of GetHome(). If you update the

XSL rendering boilerplate file as suggested above, comment out this variable declaration to avoid
unnecessary overhead. Developers can uncomment this line if they need this variable.

GetRandomSiblings() — Return Multuple Values Using XML

You can return a list from an XSL extension using a delimited string, or using XML. You can use this
technique to return a list of item IDs, which you can process using XSL code similar to that used with
the sc:SplitFieldValue() XSL extension method.

For example, a rendering needs to generate links to five random siblings of the context item, but
never to the context item itself, and without ever generating two links to the same sibling. The
following extension library class inherits from the Sitecore.Xml.Xsl.XslHelper class in order to

use its GetItem()method to retrieve the Sitecore.Data.Items.Item corresponding to a

System.Xml.XPath.XPathNodeIterator.

namespace Namespace.Xml.Xsl

{

 public class XslHelper : Sitecore.Xml.Xsl.XslHelper

 {

 public XPathNodeIterator GetRandomSiblings(XPathNodeIterator iterator,int max)

 {

 Sitecore.Xml.Packet packet = new Sitecore.Xml.Packet("values","");

 iterator.MoveNext();

 Sitecore.Data.Items.Item item = GetItem(iterator);

 if(item != null)

 {

 Sitecore.Collections.ChildList children = item.Parent.Children;

 if(children.Count>1)

 {

 if(max>children.Count-1)

 {

 max = children.Count-1;

 }

 List<Sitecore.Data.ID> ids = new List<Sitecore.Data.ID>();

 Random rand = new Random();

 while(ids.Count<max)

 {

 int index = rand.Next(children.Count);

 if(children[index].ID!=item.ID && !ids.Contains(children[index].ID))

 {

 packet.AddElement("value",children[index].ID.ToString());

 ids.Add(children[index].ID);

 }

 }

 }

 }

 XPathNavigator navigator = packet.XmlDocument.CreateNavigator();

 if (navigator == null)

Sitecore CMS 6.2 or later Presentation Component XSL
Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 47 of 47

 {

 navigator = new XmlDocument().CreateNavigator();

 }

 navigator.MoveToRoot();

 navigator.MoveToFirstChild();

 return navigator.SelectChildren(XPathNodeType.Element);

 }

 }

}

This code will return an XML structure such as the following:

<values>

 <value>{ID}</value>

 ...

 <value>{ID}</value>

</values>

You can process this structure using code such as the following:

<xsl:for-each select="namespace:GetRandomSiblings(.,5)">

 <xsl:for-each select="sc:item(text(),$sc_currentitem)">

 <sc:link>

 <xsl:value-of select="@name" />

 </sc:link>

 </xsl:for-each>

</xsl:for-each>

Note
This code is provided only for demonstration purposes and could be very inefficient with a small
number of siblings.

