XSL Reference

sitecore

compelling web experiences’

Sitecore CMS 6

Presentation Component
XSL Reference

A Conceptual Overview for Developers

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

Table of Contents

(g1 1] g A 0T [o 1o T o PSR
Chapter 2 Basic XSL and XPath CONSIIUCES........ccvuviieeeiiiiiiiiiieee e
2.1 XML, XSL, and XPath TOKENSccocuuiiiiiiiiieiiiiee e siiee e
2.2 XSL EIBMENTS.....eiiiiiiiiiee ettt
2.2.1 The <xsl:variable> XSL EIEMENt........cccciiiiiiiiiiiiiiei e
2.2.2 The <xsl:value-0f> XSL EIemMent.........cccccoiiiiiiiiiiiiiiiee e
2.2.3 The <XSLif> XSL EI@MENT....ccciiiiiiiiieiie e
2.2.4 The <xsl:choose, <xsl:when>, and <xsl:otherwise> XSL Elements
2.2.5 The <xsl:for-each> XSL EIeMeNntcccooviiiiiiiiiiiiiiee e
2.2.6 The <xsl:sort> XSL EIemMentcccuuiiiiiiiii e
2.2.7 The <xslitemplate>, <xsl:call-template>, and <xsl:with-param> XSL Elements
2.2.8 The <xsl:apply-templates> XSL Element..................cccciiii
2.3 XPath and XSL FUNCHONScooiiiiiiiieiie ettt
2.3.1 The position() FUNCLION ...,
2.3.2 Thelast() FUNCLION ...
2.3.3 Thecurrent() FUNCLION.........cooii i
2.3.4 The document() FUNCHIONcooiiiiiiiiiiiiie et
2.3.5 The concat() FUNCHONcocuiiiiiiiiiie e
2.3.6 The translate() FUNCHONoviiiiiiiie e
2.3.7 The true() FUNCHONcuuiii ittt
2.3.8 The false() FUNCLONooiiiiiiiieii et
2.3.9 Thenot() FUNCLON ...,
2.3.10 The couNt() FUNCLIONciviiiiiieieieieieieeeieeeeeeeeeeeeeee e eeeeeeeeaeeseeeseeesseeeennnes
2.3.11 The contaiNS() FUNCHIONvviiiiiiiiiiieiiieeieeeeeeeeeteeee e eeeeeeeeeneees
Chapter 3 The Sitecore XML StruCtUIre.........ccooeeeeiii i,
3.1 WOrKING WIth [EEMIS ...ttt e e e eeeeeesaeeseseseneennes
3. L1 HEM ARIDULES ...t
0 2 1 =T o T T o PR
3.2 XPath NAVIQATIONcovviiieiiiiii ettt
3.2.1 Elements and ITEBMSuuiiiiiiee et
3.2.2 SPECIFIC IIEMS ..t
The Context Item: $SC_CUITENLIEMciiiiiiiii e
The Data Source Item : $SC_IEM. ..o iiiiiiiiiiiie e
The ContexXt EIBMENT &
The CUITeNt EIBMENT........uiiiiiiiii e
Item Variables USINg XPathuuuiiiiiiiiiiiiiiiieiiiiieieieieieseeeeesesessssesssssssesessserennne
Item Variables USING SCItEM() ...uuuuuuiriiriiiiiiiiiiiiieieieieeeeessseeessesssssesesessressrererereren...
Pass Items to XSL Renderings Using the <xsl:param> XSL Element..................
3.2.3 HeM RETEIENCES ..o it
3.2.4 Implicit Relationships (XPath AXES)coiiiiiiiiiiiieiiiee e
I CTS T 0L
B I L= 71 o I £
I ET = U= L 01
The ancestor and ancestor-0r-Self AXESc..uvuvviieeiiiiciiieir e
Descendants and RECUISIONciiii ittt a e
3.3 SeleCNG IEIMS ... e
3.3.1 How to Select Items Based on a Specific Data Templatecccccceeeeennn.
3.3.2 How to Select Items with a Version in the Context Languagecc........
3.3.3 How to Select Items with Children ...
Chapter 4 XSL and XPath With SItECOIEccoiiiiiiiiiiieie e
4.1 The Sitecore XSL Boilerplate Fileccooiiiieiiiiiie e

..................... 18

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 2 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

4.2 XSL Error ManagemeENLcouuuuuiiiieieiiiiiiiis e eeeeiits e e e e e e eeabs s e e e s eesrann e eeaees
4.3 Working With FIeldScuviiiieiiiiieec e enees
4.3.1 File Drop Area FIeldscccvviiiiiee i
44 Overview of XSL Extension Controls and Methods ...,
4.5 Sitecore XSL EXteNSioN CONMIOIScoiiiiiiiiiiiiee e
451 CommON AHDULES. ...cocoiiiiiiiiiiie e e
The show-title-when-blank AttrbULE...........ccceiiii e
The disable-web-editing AtrHDULE.cooiiii e
The SeleCt ALIHDULE ...
ArDItrary AHIHDULESoooo i e e e e
4.5.2 The Sitecore XSL EXtension CONtrolS..........ccccoveiiiiiieiniiineeniiee e
The <sc:date> XSL EXtension CONIOl.......c..eviiiiiiieiiiiiie et
The <sc:dot> XSL EXtension CONIOl........ccuuiiiiiiiiieiiiiiee it
The <sc:html> XSL EXteNSion CONLrOlcuueiiiiiiiieiiiiiee et
The <sc:image> XSL Extension Control.........cccccveeiiiiiiiiiiie e
The <sc:link> XSL EXtension CONtrolcccuvveiiiieeiiiiiieceee e
The <sc:memo> XSL EXtension CONtrol...........couvveeiiiiiiiiiiieee e
The <sc:sec> XSL EXtension CONrolcocuvviiviieeiiiiiiieieee e
The <sc:text> XSL EXtension CONtrol........cccuvvviviiee i
The <sc:disableSecurity> XSL Extension Controlccccceeevviiiiiiiieereeess i,
The <sc:enableSecurity> XSL Extension Control...........cccccevevviiiiiiieeeeee s

4.6 Sitecore XSL EXtension Methods...........ccuuviiiiiiiiiiiiiieeee e
4.6.1 The sc Namespace : The Sitecore.Xml.Xsl.XsIHelper Class............cccvvueue.
The sc:fld() XSL Extension Methodcoevvieiiiiiiiiiieiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaes
The sc:field() XSL Extension Method............coevvviiiiiiiiiiiieiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeens
The sc:item() XSL EXtension Methodooevevviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeaeeaes
The sc:path() XSL EXtension Methodcooiiiiiiiiiiiiiiiiieee e
The sc:GetMediaUrl() XSL Extension Methodccccoviieiiiiiieiiiiee e
The sc:pageMode() XSL Extension Methodcocoeeiiiiiiiiiiiiii e
The sc:IsltemOfType() XSL Extension Method.............cccovoiveiiiiiiiiiiiiee e
The sc:Split() XSL EXtension Methodcoooiiiiiiiiiiiiiiiiiiee e
The sc:formatdate() XSL Extension Method ...
The sc:ToLower() XSL Extension Methodcevvvvvviiiiiiiiieeiiiiiiiiieieeeeeeeeveaees
The sc:trace() XSL Extension Methodcoovvviviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeveeeeeeas
The sc:gs() XSL EXtension Methodcoevvvvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeaeeeans
The sc:random() XSL Extension Methodoovvviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeees
4.6.2 Additional XSL Extension Method ClasSes...........ccccceeiiiniiiiiiiiee e
The dateutil Namespace : Sitecore.DateULiloeevveviiiiiiiiiiiieiiiiiiieieieeeeeieeenns
The stringutil Namespace : Sitecore.StringULl ...
The mainutil Namespace : Sitecore.MainUtilcccceiiiiiiiiiiiei e
The sgl Namespace : Sitecore. Xml.XsL.SgIHEIper ...
Chapter 5 Custom XSL EXtension LIDIArescocuveiiiiiiiiiiiiiiee e
51 Custom XSL EXtension Methodscccuveviieieiiiiiiieieee e
5.1.1 How to Register a Custom XSL Extension Method Library
5.1.2 How to Add Methods to the SC NameSpaCecccovriiiiiiiiiieeiniiiiieeeeeeee
5.1.3 How to Access Properties of an XSL Extension Method Library Object
5.1.4 XSL Extension Method EXampPles.......cccoouiiiiiiiiiiiiiiiiieeee e
GetHome() — Return a Sitecore.Data.ltems.ltem ...,
GetRandomSiblings() — Return Multuple Values Using XMLccccccoeeiiiiiiinneen.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 3 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

Introduction

This Presentation Component XSL Reference provides a conceptual overview of
common XSL rendering constructs for Sitecore developers. For more information about
the topics described in this document, see the Presentation Component Reference
manual.

XSL is a declarative programming language intended for processing XML using XPath
statements to navigate the XML data. XML, XSL, and XPath are each significant topics of
their own. While you can achieve significant functionality with only a cursory knowledge
of XSL and XPath, adjusting from procedural and object-oriented programming
languages that access relational data stores to a declarative language that accesses
hierarchical data stores can present some challenges. This document focuses on
extensions to XSL for working with Sitecore content. Consult external documentation for
more information on XML, XSL, and XPath.!

XML is a tag-based, hierarchical data store similar to HTML markup, but with stricter
syntax and greater flexibility in structure and content. An XSL file is an XML file that
contains elements recognized by an XSL transformation engine.
Anything you can achieve with an XSL rendering, you can alternatively implement with a
sublayout or a Web control. Use XSL renderings where appropriate, but consider .NET
components where XSL or XPath syntax is unwieldy, code is difficult to manage, or
performance is poor.
This document contains the following chapters:

e Chapter 1 — Introduction

e Chapter 2 — Basic XSL and XPath Constructs

e Chapter 3 — The Sitecore XML Structure

e Chapter 4 — XSL and XPath with Sitecore

e Chapter 5— Custom XSL Extension Libraries

1 Sitecore recommends XSLT: Programmer’s Reference, by Michael Kay
(http://www.wrox.com/WileyCDA/WroxTitle/productCd-0764543814.html).

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 4 of 47

http://www.wrox.com/WileyCDA/WroxTitle/productCd-0764543814.html

Sitecore CMS 6 Presentation Component XSL Reference @ S teco re

Basic XSL and XPath Constructs

This chapter provides an overview of basic XSL and XPath constructs.
This chapter contains the following sections:

e XML, XSL, and XPath Tokens

e XSL Elements

e XPath and XSL Functions

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 5 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

2.1 XML, XSL, and XPath Tokens

The following table lists various programming tokens used in XSL renderings, many of which are
described further in this document.

Note

The sections and chapters of this document that follow this section describe many of the constructs
referenced in this chapter. Refer back to this section when you encounter these constructs.

Token Meaning

A single dot character represents the context element, which is the
current location of the XSL transformation engine in an XML document.

Two dot characters represent the parent axis.

/ By itself, the slash character represents root of an XML document.
Otherwise, a slash designates the XSL path operator, which separates
elements from child elements (* /item) and attributes (* /@id), much
like a backslash (\) separates a file system directory from
subdirectories and files.

// Two slash characters represent the descendant axis. For
performance, avoid use of this construct.

@ The at character specifies an attribute. For example, @key matches the
attribute named key.

* The star character matches any element. For example, /* matches the
root element of any XML document.

$ The dollar character indicates a named parameter or variable. For
example, $sc_currentitem represents the <item> element in the
XML representation of the Sitecore database that corresponds to the
URL requested by the browser

[] Square bracket characters indicate a predicate, which often contains
logic to filter a collection of elements.

& XML-escaped ampersand (“&”).

&1t; XML-escaped left angle bracket (“<”).

> XML-escaped right angle bracket (“>”).

" XML-escaped quote (").

' XML-escaped apostrophe (“'7).

SHHHE; XML-escaped character specified by hexadecimal value.
and Logical and operator.

or Logical or operator.

Axis resolution operator.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 6 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teco re

Note
XML supports only the five named character entities listed above. In XSL, you cannot use other named
entities as you would in HTML, such as . Instead, use the corresponding numerical entity, such as

 .2

2 For a table mapping text entity codes to the corresponding numerical equivalents, see
http://www.webmonkey.com/reference/Special_Characters.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 7 of 47

http://www.webmonkey.com/reference/Special_Characters

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

2.2 XSL Elements

This section provides an overview of some of some XSL elements commonly used in Sitecore XSL
renderings. XSL elements use the xs1 namespace.

Important

XSL looping constructs index elements starting with position 1, not 0 as in arrays in C#.

2.2.1 The <xsl:variable> XSL Element

The <xsl:variable> XSL element creates a named variable. For example, each of the following will
create the variable Scontent that represents the /Sitecore/Content item (an <item> element in the
XML document that represents a Sitecore database).

<xsl:variable name="content" select="/item[Q@key='sitecore']/item[Q@key="'content']" />

<xsl:variable name="content" select="/*/item[Q@key='content']" />
<xsl:variable name="content" select="sc:item('/sitecore/content',.)" />

If you create a variable that represents a Sitecore item, you can then retrieve values from that item,
iterate over its children, or perform other operations on the item.
<xsl:variable name="content" select="sc:item('/sitecore/content',.)" />
<xsl:for-each select="$content/item">

Child: <xsl:value-of select="@name" />

</xsl:for-each>

Avoid the overhead of variables when possible. Use IDs instead of elements, and when necessary,
reference <item> elements directly instead of using variables:
<xsl:for-each select="sc:item('/sitecore/content',.)/item">

Child: <xsl:value-of select="@name" />

</xsl:for-each>

Note

You can think of XSL variables like constants in that once you have created a variable, you cannot
change its value. You can sometimes work around this issue by passing variables as parameters to
recursive XSL templates.

2.2.2 The <xsl:value-of> XSL Element
The <xsl:value-of> XSL element processes a value. You can use <xsl:value-of> to write a value
to the output stream. For example, to write the raw value of a field in an item to the output steream:

<xsl:value-of select="sc:fld('FieldName', $sc currentitem)" />

You can also use <xs1:value-of> to populate a variable using a hamed template:

<xsl:template name="GetContentID">
<xsl:value-of select="sc:item('/sitecore/content',.)/Q@id" />
</xsl:template>

<xsl:variable name="contentid">
<xsl:call-template name="GetContentID" />
</xsl:variable>
You can control whether <xs1:value-of> escapes XML special characters such as ampersand (“s”)
using the disable-output-escaping attribute:

<xsl:value-of select="sc:fld('FieldName', $sc_currentitem)" disable-output-escaping="yes"

/>

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 8 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

Unless you set disable-output-escaping to yes, the XSL transformation engine encodes special
characters in the source value. For example, the system outputs samp; for any ampersand (“s”)
characters in the source value. You may need to disable output escaping when you process a URL that
contains multiple query string parameters separated by ampersand characters.

2.2.3 The <xsl:if> XSL Element

The <xs1:if> XSL element invokes the enclosed code if the condition specified by the test attribute is
true.

Because XSL treats null and empty strings as false, a common shortcut to check whether a field exists
and contains a value is to check if the sc: £1d () XSL extension method returns true.
<xsl:if test="sc:fld('FieldName', $sc_currentitem) ">

<!-- field exists in the specified item and contains a value-->
</xsl:if>

Note
XSL does not include elements such as <xsl:elseif> 0r <xsl:else>. Use <xsl:choose> as
described in the following section for logic involving multiple conditions.

2.2.4 The <xsl:choose, <xsl:when>, and <xsl:otherwise> XSL Elements

The <xs1:choose> element processes the first segment of code contained within an <xs1 : when>
element with a test condition that evaluates to true, or the <xs1:otherwise> element if none of the
conditions evaluate to true.
<xsl:variable name="random" select="sc:random(10)" />
<xsl:choose>
<xsl:when test="$random > 6">
<!--random is greater than 6-->
</xsl:when>
<xsl:when test="S$random > 3">
<!--random is greater than three but less than or equal to 6-->
</xsl:when>
<xsl:otherwise>
<!--random is less than or equal to 3-->
</xsl:otherwise>
</xsl:choose>

Note

For each <xs1:choose> element, the system will process the segment of code contained in only one
<xs1:when> element, or the <xsl:otherwise> element. If there is N0 <xsl:otherwise> element,
and none of the test conditions evaluate to true, the system will not process any code within the
<xsl:choose> element.

2.2.5 The <xsl:for-each> XSL Element

The <xs1:for-each> XSL element iterates over zero or more elements as specified by the XPath
expression in the select attribute. Within each iteration of the <xs1: for-each>, the context element
(“.”) contains the selected item.

The following example iterates over the children of the context item:

<xsl:for-each select="$sc_currentitem/item">
<xsl:value-of select="Q@name" />

</xsl:for-each>

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 9 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

2.2.6 The <xsl:sort> XSL Element

The <xs1:sort> XSL element sorts a list of elements, such as within <xs1:for-each>.

The following example sorts the children of the context item in descending order by a date field value.

<xsl:for-each select="$sc currentitem/item">
<xsl:sort select="sc:fld(' wupdated',6 .)" order="descending" />
<xsl:value-of select="@name" />

</xsl:for-each>

You can reverse the default sort using the @sortorder attribute:

<xsl:for-each select="$sc currentitem/item">
<xsl:sort select="@sortorder" order="descending" />
<xsl:value-of select="Q@name" />

</xsl:for-each>

Note
By default, items in the XML available to XSL renderings appear in the order defined in the content tree.

2.2.7 The <xsl:template> , <xsl:call-template>, and <xsl:with-param> XSL
Elements

The <xsl:template> XSL element encapsulates a segment of XSL code, similar to a method,
procedure, or function in other languages. The XSL transformation engine may write the output generated
by the content of an <xs1:template> element to the output stream, or encase that output in an XSL
variable. In XSL, the term template refers to a segment of XSL code contained within an
<xsl:template> element.

If you invoke a template using <xsl:call-template>, the XSL transformation engine writes the output
of the template to the output stream. For example:

<xsl:template name="TemplateName">

<xsl:value-of select="$sc currentitem/@template" />
</xsl:template>
<xsl:call-template name="TemplateName" />

Alternatively, you can put the output of a template in a variable:

<xsl:variable name="VariableName">
<xsl:call-template name="TemplateName" />
</xsl:variable>

Note

You can use XSL match templates in XSL renderings, but match templates are outside the scope of this
document. For more information about match templates, see the following section The <xsl:apply-
templates> XSL Element.

You can pass parameters to an XSL template using the <xs1:param> and <xsl:with-param> XSL
elements, and you can specify default values for parameters using the select attribute of
<xsl:param>.

<xsl:template name="TemplateName">
<xsl:param name="VariableName" select="$sc currentitem" />
<xsl:value-of select="$VariableName/@template" />
</xsl:template>
<xsl:call-template name="TemplateName">
<xsl:with-param name="VariableName" select="." />
</xsl:call-template>

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 10 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ sitecore

Note
The context element within an XSL template is the element that was the context element when the
element in the calling context.

2.2.8 The <xsl:apply-templates> XSL Element

You can use the <xs1:apply-templates> XSL element to invoke XSL templates using match patterns
instead of explicit lists of elements such as those used by <xs1: for-each>. For more information about
<xsl:apply-templates>, see external documentation on XSL.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 11 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

2.3 XPath and XSL Functions

This section provides an overview of functions available in XPath statements used in XSL programming.

2.3.1 The position() Function

The position () function returns the location of the element within a loop. For more information about
the position () function, see the section The ancestor and ancestor-or-self Axes.

A common pattern is to compare position () to last () to determine whether a loop has reached the
last element, such as to insert a spacing element between output elements. For example, the following
code outputs an HTML line break (
) after each link to a child item of the context item except for the
last link in the list.

<xsl:for-each select="$sc currentitem/item">
<sc:link><sc:text field="FieldName" /></sc:link>
<xsl:if test="position() !=last()">

</xsl:if>
</xsl:for-each>

2.3.2 Thelast() Function

The 1ast () function returns the number of elements in a list. For more information about the 1ast ()
function, see the previous section The position() Function.

2.3.3 The current() Function

The current () function represents the current element. For more information about the current ()
function, see the previous section The position() Function.

2.3.4 The document() Function

The document () function retrieves an external XML source, such as an RSS feed.

<xsl:variable name="rssurl" select="'http://www.asp.net/news/rss.ashx'" />
<xsl:variable name="rss" select="document ($rssurl)" />
<xsl:if test="S$rss">
<xsl:for-each select="S$rss//item">
<a>
<xsl:attribute name="href">
<xsl:value-of select="1link"/>
</xsl:attribute>
<xsl:value-of select="title"/>

<p>
<xsl:value-of select="description" />
</p>
</xsl:for-each>
</xsl:if>

You can store the URL of the RSS feed in a field of an item:

<xsl:variable name="rssurl" select="sc:fld('FieldName', $sc_currentitem)" />

2.3.5 The concat() Function

The concat () function concatenates strings.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 12 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

<xsl:variable name="VariableName" select="concat ('A','B")" />
<xsl:variable name="VariableName" select="concat (concat('A','B'),'C")" />
<xsl:variable name="VariableName" select="concat (concat (concat('A','B"'),'C'),'D")" />

2.3.6 The translate() Function

The translate() function converts characters in an input string to other characters in an output string, or
removes characters from the input string. For example, the following outputs the specified field value after
replacing dash characters (“-”) to underscore characters (“ ”):

<xsl:value-of select="translate(sc:field('FieldName',$sc_currentitem),'-',' ")" />

You can use the translate() function to convert a string representation of a date or date and time to a
number. Sitecore stores date and time values using the ISO date format corresponding to the .NET
format pattern yyyyMMddTHHmms s, where T is a literal character that separates the date portion of the
value from the time portion. To convert a date in this ISO format to a number for comparisons or other
purposes, you can remove the T character using the translate () function.

<xsl:variable name="updated"
select="translate(sc:fld('_ updated',6 $sc_currentitem),'T','"')" />

2.3.7 Thetrue() Function

The true () function returns a true value. You can use this function to inverse a value.

2.3.8 The false() Function

The false () function returns a false value. You can use this function to inverse a value.

2.3.9 The not() Function

The not () function negates a condition. The following condition is never true:

<xsl:1f test="not (true())">
<!--the XSL transformation engine will never invoke this code.-->
</xsl:if>

2.3.10 The count() Function

The count () function returns the number of elements in a list. For example, to determine if the context
item has more than five child <item> elements:

<xsl:if test="count ($sc_currentitem/item) >5">

2.3.11 The contains() Function

The contains () function returns true if the first argument contains the second argument. You can use
the contains () function to determine if a list of IDs, such as that stored in a Multilist field, contains the
ID of a specific item. For example, to determine if a field in the context item contains the ID of the context
item:

<xsl:variable name="ids" select="sc:fld('FieldName', $sc_currentitem)" />

<xsl:if test="contains ($ids,$sc currentitem/@id) ">

<!--The specified field in the context item contains a reference to the context item-->
</xsl:if>

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 13 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ sitecore

You can implement this without a variable:

<xsl:if test="contains(sc:fld('FieldName',$sc currentitem), $sc currentitem/@id)">
<!--The specified field in the context item contains a reference to the context item-->
</xsl:if>

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 14 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ sitecore

The Sitecore XML Structure

This chapter provides an overview of the structure of the XML representation of a
Sitecore database available to XSL renderings.

This chapter contains the following sections:
¢ Working with Items
¢ XPath Navigation

e Selecting Items

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 15 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

3.1 Working with Items

XSL renderings access an XML document that represents the structure of a Sitecore database. The XML
document consists of a hierarchy of <item> elements. Each <item> element corresponds to an item in
the Sitecore content tree, and contains a number of attribute values, a collection defining the fields of the
item, and potentially a number of child <item> elements. For XSL processing efficiency, this XML
representation does not contain field values.

Important

While there are methods to view the XML representation of a Sitecore database, use your knowledge of
the information architecture, including the content tree and data template definitions, and the Sitecore
extensions described in this document to avoid reliance on the specific XML format.

The root <item> element in the XML document corresponds to the /Sitecore item in the content tree.
The following XML fragment in cludes some of the data in the default /Sitecore and
/Sitecore/Content items. All <item> elements have a similar structure.

<item name="sitecore" key="sitecore" id="{11111111-1111-1111-1111-111111111111}" tid="{C6576836-
910C-4A3D-BA03-C277DBD3B827}" mid="{00000000-0000-0000-0000-000000000000}" sortorder="100"
language="en" version="1" template="root" parentid="{00000000-0000-0000-0000-000000000000}">
<fields>
<field tfid="{5DD74568-4D4B-44C1-B513-0AF5F4CDA34F}" key=" created by" type="text" />

<!-- additional field definition elements -->
<field tfid="{9C6106EA-7A5A-48E2-8CAD-FOF693B1E2D4}" key=" read only" type="checkbox" />
</fields>

<item name="content" key="content" id="{0DE95AE4-41AB-4D01-9EB0-67441B7C2450}" tid="{E3E2D58C-
DF95-4230-ADC9-279924CECE84}" mid="{00000000-0000-0000-0000-000000000000}" sortorder="100"
language="en" version="1" template="main section" parentid="{11111111-1111-1111-1111-
111111111111}">

<fields>
<field tfid="{BADD9CF9-53E0-4D0C-BCC0-2D784C282F6A}" key="_ updated by" type="text" />
<!-- additional field definition elements -->
</field>
</fields>
<!— item elements at this level represent children of /Sitecore/Content-->
</item>
<!-- additional item elements at this level represent siblings of /Sitecore/Content-->
</item>

3.1.1 Item Attributes
Each <item> element has a specific set of attributes, including:
¢ @name: The name of the item.
e @key: The lowercase of the name of the item.
e @id: The ID of the item.
e @tid: The ID of the data template definition item associated with the item.

e @mid: The ID of the branch template or command template used to insert the item, or the null
GUID.

e @sortorder: The numerical sort order of the item relative to its sibling items.
e @language: The context language.
e Q@version: The version of the item within the language.

e (@template: The lowercase name of the data template associated with the item.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 16 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

e @parentid: The ID of the parent item of the item, or the null GUID for the root item.

Warning

For best performance, always compare the values of @id attributes to determine whether two elements
represent the same item. For example, test whether $sc_currentitem/@id=$sc_item/@id, not
whether $sc_currentitem=$sc item.

3.1.2 Iltem Fields

Each <item> element in the XML representation of a Sitecore database contains a <fields> element.
Each <fields> element contains a number of <field> elements. Each <field> element represents a
field definition in the data template associated with the item, or one of the base templates associated with
that template, including the standard template.

Each <field> element has a specific set of attributes including:
e Q@tfid: The ID of the data template field definition item.
e @key: The lowercase name of the data template field definition item.
e Q@type: The lowercase name of the data template field data type.
Note

The <field> elements do not contain field values. Use XSL extension controls and methods to retrieve
field values.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 17 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

3.2 XPath Navigation

This section describes techniques for using XPath notation to navigate an XML structure representing a
Sitecore database in XSL renderings.

3.2.1 Elements and Iltems

XML represents data as a hierarchy of elements enclosed in angle brackets (“<>”). The XML
representation of a Sitecore database available to XSL renderings represents each item in the database
as an XML element of type <item>. In most cases, references to elements in this document refer to
<item> elements, though the data contains other elements such as <fields> and <field> as
described previously.

3.2.2 Specific Items

At any point in XSL processing, the developer can access several different items available to the XSL
transformation engine.

The Context Item: $sc_currentitem

The context item is the item that corresponds to the path in the URL requested by the client. The
$sc_currentitem variable contains the <item> element that represents the context item in the XML
representation of the Sitecore database. The context item is the default data source for all renderings and
therefore the default context element for XSL renderings that do not specify a data source.

The Data Source ltem : $sc_item

A rendering can retrieve data from its data source item. The $sc_item variable represents the data
source item for an XSL rendering. If the developer does not specify a data source item for a rendering,
the default data source item is the context item, and $sc_itemand $sc_currentitem are the same
item.

XSL rendering logic begins with the first <xs1:template> XSL element in the code file. The XSL
rendering boilerplate file uses the select attribute of the <xsl:apply-templates> XSL element to
set the context element to the data source item and invoke the XSL template with mode attribute main:

<xsl:template match="*">
<xsl:apply-templates select="$sc item" mode="main"/>
</xsl:template>
<xsl:template match="*" mode="main">
<!--the context element is the data source item-->
<!--developers typically insert code here-->
</xsl:template>

The Context Element : .

The context element is the location of the XSL transformation engine within an XML document, and is the
location from which the XSL transformation engine interprets relative XPath statements. The dot

character (“.”) represents the context element. XSL constructs such as <xs1: for-each> change the
context element, but cannot change the context item.

The Current Element

Within the predicate of an XPath statement, the current element is the element that was the context
element at the point that the XSL transformation engine began evaluating the XPath statement. The

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 18 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ sitecore

current element and the context element are often the same element. The current () function returns
the current element

Consider the following example:

<xsl:for-each select="$sc currentitem">
<xsl:for-each select="./item[current()/@id"=./Qid">
<xsl:value-of select="@name" />
</xsl:for-each>
</xsl:for-each>

The outer <xsl: for-each> element iterates over the context item ($sc_currentitem), setting the
context element within the outer loop to the <item> element corresponding to the context item. The inner
<xsl:for-each> iterates over the child <i tem> elements of the context element, which, within the
outer loop, is the <item> element that represents the context item. Within the predicate of the XPath
statement in the select attribute of the inner <xs1:for-each>, the context element is the child item,
while the current element (current ()) remains the context element as it was at the point that the XSL
transformation engine began evaluating the XPath statement, which was the <item> element that
corresponds to the context item. Because the ID of a child item is never equal to the ID of its parent, the
inner <xs1:for-each> processes no items. This subtle difference between the current element and the
context element can be important, especially when accessing the ancestor and ancestor-or-self
axes as described further in this document.

Consider the following code:

<xsl:for-each select="$sc item/item">
<xsl:choose>
<xsl:when test="$sc currentitem/ancestor-or-self::item[@id=current()/Q@id">
<!—the context element is the iteration item or one of its descendants-->
</xsl:when>
</xsl:choose>
</xsl:for-each>

The outer <xs1: for-each> element iterates over the <item> elements that are children of the data
source item ($sc_item). The <xsl:when> element tests if the context item ($sc_currentitem)is or
has an ancestor that is that child <item> element (current ()), for instance to determine if the context
item is that item or one of its descendants. Within the predicate, the context element is the <item>
element on the ancestor-or-self axis, while the current element remains the child of the data source
item.

Important

Be sure to understand the difference between the context item, the context element, and the current
element, which may or may not all be the same <item> in an XML document that represents a Sitecore
database. The context item is the item requested by the browser. The context element is the location of
the XML transformation engine in an XML document. The context item is the default context element for
renderings that do not have an explicit data source. The context element is most commonly in the XML
document containing the context item, and is most commonly an <item> element, but could be any type
of element and could be in a different XML document. The current element refers to the context element,
except in the predicate of looping constructs, where the current element is the element that was the
context element at the opening of the loop.

Item Variables Using XPath

You can reference any item using a fully-qualified XPath statement (sometimes called a long path). For
instance, you can create a variable representing the /Sitecore/Content item using the following XSL
construct:

<xsl:variable name="content" select="/item[Q@key='sitecore']/item[@key='content']" />

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 19 of 47

mailto:/@id%22=./@id

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

Note
Because an XML document always has exactly one root element, you can shorten this expression using
the wildcard character star (“*”) to match that root element:

<xsl:variable name="content" select="/*/item[Q@key='content']" />

Item Variables Using sc:item()

In addition to a true XPath, each <item> element also has a short path and an ID. If you know the ID or
short path of an item, you can access that item by passing the short path or ID to the sc:item () XSL
extension method:

<xsl:variable name="content" select="sc:item('/sitecore/content',.)"/>

<xsl:variable name="content" select="sc:item('{110D559F-DEA5-42EA-9C1C-8A5DF7E70EF9}"',.)" />
<xsl:for-each select="S$content/item">

<xsl:value-of select="@name" />

</xsl:for-each>

Pass Items to XSL Renderings Using the <xsl:param> XSL Element

You can pass additional items to XSL renderings as parameters using the <xs1 :param> XSL element.
Add rendering parameter definitions in the header of the XSL rendering, near the default parameter
definitions. For example:

<xsl:param name="ParamNamePath"><!--default parameter value--></xsl:param>
<xsl:variable name="VariableName" selet="sc:item($ParamNamePath,.)" />

For more information about passing parameters to XSL renderings, see the Presentation Component
Reference manual.

3.2.3 ltem References

An item can contain fields that contain the IDs of other Sitecore items, representing references from one
item to another. If a field contains a single ID, you can use the sc:f1d () XSL extension method to
retrieve that ID, and pass it to the sc:item () XSL extension method to select the corresponding
<item> element.
<xsl:variable name='IDVariableName' select='sc:fld('FieldName", $sc item)' />
<xsl:if test="S$IDVariableName">
<xsl:variable name='ItemVariableName' select='sc:item($IDVariableName, $sc_item) ' />
<xsl:if test="S$ItemVariableName">
<xsl:value-of select="$ItemVariableName/@name" />
</xsl:if>
</xsl:if>

You can use the sc:Split () XSL extension method to iterate over the ordered list of IDs in a field that
can reference multiple items.
<xsl:for-each select="sc:Split('FieldName',.) ">
<xsl:for-each select="sc:item(text(),.)">
<xsl:value-of select="@name" />

</xsl:for-each>
</xsl:for-each>

Note

While it may appear unusual to process what should always be a single item, this approach provides
advantages over using only the sc:item () XSL extension method, such as setting the context element
and shorter, more flexible, and more consistent syntax.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 20 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teco re

Tip
You can use the sc:Split () XSL extension method to process a field that contains the ID of a single
item as well as fields that contain the IDs of multiple items.

3.2.4 Implicit Relationships (XPath Axes)

Each <item> element in the XML document has a number of implicit relationships with other <item>
elements through various hierarchical axes. The following diagram, in which J represents the context
element, provides an overview of the various XPath axes.?

(1) not shown: attribute and L7 N ancestor-orself::
namespace nodes and axes

(2) letter order indicates nodes

) ancestor:: -
in document order N

foIIowmg::

precedlng

parent:::

R foIIowmgS|bI|ng

self::.';

child::

descendant::

Copyright © Crane Softwrights Ltd. descendant-or-self::
http://www.CraneSoftwrights.com

The Self Axis

In XPath expressions, the dot character (“.”) represents the self axis, which contains only the context
element, and is implicitly the default axis. Developers infrequently reference the self axis explicitly,
instead referencing the context element implicitly or explicitly. The following three constructs are
equivalent, with the shortest being generally preferable.

<xsl:value-of select="@id" />

<xsl:value-of select="./@id" />
<xsl:value-of select="self::*/@id" />

3 Published with permission of Crane Softwrights Ltd., http://www.CraneSofwrights.com.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 21 of 47

http://www.cranesofwrights.com/

Sitecore CMS 6 Presentation Component XSL Reference @ sitecore

The XPath statement in the select attribute in the first example does not specify an axis, and therefore
retrieves the value of an attribute of the context element. The second example explicitly references the
context element (.), and uses the path operator (/) to select a named attribute of that item. The third
example explicitly matches any element (*) on the self axis (self: :), and retrieves the value of the
attribute named id.

The Child Axis

Each element can have any number of child elements. The child axis is the default implicit axis, often
represented by the path operator (/).

Child elements of an <item> element include nested <item> elements representing the children of the
item, and other elements, such as the <fields> element within each <item> that contains <field>
elements that represent the fields defined in the item’s data template. In Sitecore documentation, the
terms children and child items are generally synonymous, and exclude child elements of an item in the
XML document that are not <item> elements.

In all XPath statements in the select attribute in the following examples, the token item matches
<item> elements. The first example explicitly matches <item> elements that are children of the context
element. The second example matches the same items, demonstrating that XPath defaults to processing
the child axis from the context element. The third example explicitly matches <item> elements on the
child axis of the context element. The fourth example implicitly matches <item> elements on the child
axis of the context element.

<xsl:for-each select="./item">
<xsl:for-each select="item">
<xsl:for-each select="./child::item" />

<xsl:for-each select="child::item">

You can use a construct such as the following to determine whether an item has children:

<xsl:if test="$sc currentitem/item">
<!--the context item has child items-->
</xsl:if>

The Parent Axis

Each element of the XML document has a parent element except for the root element /Sitecore. Two
dots (“. .”) specifies the axis.

For example, the following test whether the data template associated with the parent item of the context
element is named HomePage:

<xsl:if test="./parent::item[@template='homepage']">

<xsl:if test="parent::item[@template="'homepage']">

<xsl:if test="parent::*[@template='homepage']">

<xsl:if test="./../[@template='homepage']">

<xsl:if test="../[Q@Qtemplate='homepage']">

Note
The following expression determines not whether the parent item is based on the specified data template,
but whether that parent item has a child that is based on that data template:

<xsl:if test="../item[Q@template='homepage']">

The ancestor and ancestor-or-self Axes

The ancestor axis returns in document order the elements that are ancestors of the context element.
The ancestor-or-self axis is similar to the ancestor axis, but includes the context element itself.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 22 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

Document order refers to the order of elements in the XML document, from the root element down to a
specific element. Considering the axis diagram included previously, if the context item is S, the
ancestor axis includes A, F, J, and Q, while the ancestor-or-self axis includes A, F, J, Q, and S.
The ancestor and ancestor-or-self axes are frequently useful in XSL renderings to process the
items that enclose another item or determine whether an item is a descendant of another item, such as to
generate a breadcrumb or highlight a navigational element corresponding to an item that contains the
context item.

Within the select attribute of the <xs1:for-each> element, the position () function references the
index of the element in the list of elements to process. For the ancestor and ancestor-or-self
axes, this is the opposite of XML document order. In the predicate of the select attribute of the
<xsl:for-each> element, the 1ast () function returns the number of elements in the list of elements to
process.

The ancestor axis is often useful in breadcrumbs. The breadcrumb should not include links to A and F,
which represent /Sitecore and /Sitecore/Content, or to the context item, S, but should include
links to J and Q. The ancestor axes excludes the context item, S. To exclude A and F, ignore the two
furthest elements from the context item:

<xsl:for-each select="$sc currentitem/ancestor::item[position()<last()-1]1">

Developers commonly use the ancestor-or-self to determine if one item is an ancestor of another, or
is that <item> element itself. For instance, a navigation rendering might iterate over the sections beneath
the home item, linking to each but highlighting the section containing the current page:
<xsl:for-each select="S$home/item[@template="section']">
<xsl:choose>
<xsl:when test="$sc currentitem/@id=Q@id">
<!--the client has requested this section item-->
</xsl:when>
<xsl:when test="$sc currentitem/ancestor-or-self::item[@id=current ()/Q@id">
<!--the client has requested an item that is a descendant of this item-->
</xsl:when>
<xsl:otherwise>
<!--the client has not requested this item or any of its descendants-->
</xsl:otherwise>
</xsl:choose>
</xsl:for-each>

Developers also use of the ancestor-or-self axis to retrieve branding information from the nearest
ancestor <item> element that defines it, which may be the context element. For example, the following
code retrieves processes an image field in the nearest ancestor that defines a value for the field, which
could be the context element,

<sc:image field="FieldName" select="$sc currentitem/ancestor-or-
self::item[sc:fld('FieldName', ., "'src')][1]" />
The tokens $sc_currentitem/ancestor-or-self::item cause the XSL transformation engine to
evaluate the predicate for the context element itself and each of its ancestor <item> elements. The first
predicate restricts the selection to only those <item> elements that define a value for the specified field
([sc:fld('FieldName', ., 'src')]). The second predicate ([1]) selects the matching <item>
element that is closest to the context item. The <sc:image> control generates an tag using the
specified field value in that item.

Descendants and Recursion

The descendant axis includes all descendant elements of an element, recursively. The descendant-
or-self axis includes all descendant elements of an element, recursively, as well as the element itself.
Both axes represent elements in XML document order.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 23 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teco re

For example, in the diagram included previously, if the context element is J, then the descendant axis
includes the K, L, M, N, O, P, Q, R, and S elements, while the descendant-or-self axis includes the
J,K,L,M, N, O, P, Q, R, and S elements.

Recursion, including the descendant and descendant-or-self axes, can be expensive, but can
serve certain purposes such as generation of a data-driven site map. For example:

<xsl:call-template name="SiteMapStep" />
<xsl:template name="SiteMapStep">
<xsl:param name="level" select="1" />
<xsl:param name="start" select="$home" />
<ul class="{concat ('sitemap', $level) }">
<xsl:for-each select="$start/item">
<1li>
<sc:link><sc:text field="title" /></sc:link>
<xsl:if test="item">
<xsl:call-template name="SiteMapStep">
<xsl:with-param name="level" select="$level+l" />

<xsl:with-param name="start" select="." />
</xsl:call-template>
</xsl:if>
</1i>
</xsl:for-each>

</xsl:template>

Warning

For performance, avoid excessive use of the descendant and descendant-or-self axes including
the // construct, especially to process large numbers of items. Structure the information architecture and
user search indexes and other features to limit the number of items processed by any single piece of
code.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 24 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

3.3 Selecting Items

This section provides techniques for selecting items to process.

3.3.1 How to Select Items Based on a Specific Data Template
To process items based on a specific data template, compare the @template attribute in the XPath
predicate.

<xsl:for-each select="$sc item/item[@template="'templatename']">

Important
The @template attribute contains the data template key, which is the lowercase of the name of the data
template.

To process items based on one or more templates, consider the XPath contains () function.

<xsl:for-each select="$sc item/item[contains('!templatenamel!templatename2!"’,
concat (concat ('!',Qtemplate),'!")]">

To process items based on data templates that share a common base template:

<xsl:for-each select="$sc currentitem/item[sc:IsItemOfType ('basetemplate’',.)]">
To process items based on data templates that share a common base template, including items based
directly on that base template:

<xsl:for-each select="$sc currentitem/item[Q@template='basetemplate' or
sc:IsItemOfType ('basetemplate’,.)]">

3.3.2 How to Select Items with a Version in the Context Language

In some sites supporting multiple languages, CMS users do not translate every item before publishing. To
select items that have a version in the context language, check for a value in the creation date field. For
example:

<xsl:for-each select:"$scicurrentitem/item[sc:fld('Aicreated',.)]">

<!--the context element is an item with a version in the context language-->
</xsl:for-each>

3.3.3 How to Select Items with Children

To select items with children, include a predicate that specifies the existence of child <item> elements.
For example, to process all children of the context item that have at least one child item:
<xsl:for-each select:"Sscicurrentitem/item[item}">

<!--the context element, a child of the context item, has at least one child item-->
</xsl:for-each>

To process all children of the context item that have at least one child based on or that inherits from a
specific data template and has a version in the context language:

<xsl:for-each select="$sc currentitem/item[item[@template='basetemplate' or
sc:IsTtemOfType ('basetemplate’',.)) and sc:fld('_created',.)]]">

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 25 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

XSL and XPath with Sitecore

This chapter describes considerations and techniques for developers working with XSL
renderings, including XSL, XPath, and Sitecore XSL extensions written in .NET.

This chapter contains the following sections:
e The Sitecore XSL Boilerplate File
e XSL Error Management
e Working with Fields
e Overview of XSL Extension Controls and Methods
e Sitecore XSL Extension Controls

e Sitecore XSL Extension Methods

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 26 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teco re

4.1 The Sitecore XSL Boilerplate File

When you create a new XSL rendering using the Developer Center, Sitecore duplicates the XSL
rendering boilerplate file, which provides a basis for the new code. For more information about the
boilerplate file used to create XSL renderings, see the Presentation Component Cookbook.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 27 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

4.2 XSL Error Management

The layout engine does not compile XSL renderings until runtime. By default, if the layout engine
encounters a syntax error in an XSL rendering at runtime, it embeds information about the error in the
output stream.

Extensions to XSL written in .NET may throw exceptions. By default, if a rendering calls an XSL extension
method that throws an exception, the layout engine adds information about the exception to the output
stream, which may include output generated by the rendering prior to the exception.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 28 of 47

Sitecore CMS 6 Presentation Component XSL Reference

@ Sitecore
4.3 Working with Fields

The following table identifies the Sitecore XSL extension controls and methods you can use to access the
different data template field types in XSL renderings as described in the following sections of this
document.

Field Types Construct Notes

Attachment N/A Do not process these field types using XSL.

Icon

IFrame

Integer

Internal Link

Layout

Number

Password

Security

Template Field Source

Tristate

Checkbox sc:fld () Use the sc:f1d () XSL extension method

Droplist to process the specified types of fields.

File

Grouped Droplist

Checklist sc:Split () Use the sc:Split () XSL extension

Multilist and method in conjunction with the sc:item()

Treelist sc:item() XSL extension method to retrieve the items

TreelistEx referenced by a field that allows selection of

multiple items.

Date <sc:date> Use the <sc:date> XSL extension control

DateTime to process Date and Datetime fields.

Droplink sc:fld () Use the sc:item () XSL extension method

Droptree _ and . in conjunction with the sc: £1d () XSL

Grouped Droplink sc:item() extension method to retrieve the item

Internal Link referenced by a field that allows selection of

a single item.

File Drop Area sc:f1d () Use the sc:f1d () XSL extension method
and . to retrieve mediaid attribute of the field,
sc:item() and the sc:item () XSL extension method

to access the children of that item. For more
information about accessing File Drop Area
fields, see the following section, File Drop
Area Fields.

General Link <sc:link> Use the <sc:1ink> XSL extension control

to process General Link fields.

Image <sc:image> | Use the <sc:image> XSL extension

control to process Image fields.

Multi-Line Text <sc:memo> Use the <sc :memo> XSL extension control

to process Multi-Line text fields.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 29 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

Field Types Construct Notes

Rich Text <sc:html> Use the <sc:html> XSL extension control
to process Rich Text fields.

Single-Line Text <sc:text> Use the <sc: text> XSL extension control
to process Single-Line Text fields.

Tip
To view the raw value stored in a field, such as the attributes available for an Image, File, or General Link
field, view raw field values in the Content Editor as described in the Client Configuration Cookbook.*

4.3.1 File Drop Area Fields

You can implement code based on the following to access the media items in a field of type File Drop
Area:

<xsl:variable name="folderid" select="sc:fld('filedropareafield', $sc item, 'mediaid')" />
<xsl:if test="S$folderid and sc:item($folderid, $sc_item)/item">
<xsl:for-each select="sc:item($folderid, $sc_item)/item">

<xsl:value-of select="Q@name"/>

</xsl:for-each>
</xsl:if>

The $folderid variable contains the GUID of the attribute named mediaid in the FileDropArea field
named FileDropAreaField in the data source for the rendering. If this value is not empty, and the
corresponding item has children, then create links to each of those children.

4 To access the Client Configuration Cookbook, see
http://sdnb5.sitecore.net/Reference/Sitecore%206.aspx.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 30 of 47

http://sdn5.sitecore.net/Reference/Sitecore%206.aspx

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

4.4 Overview of XSL Extension Controls and Methods

XSL extensions expose .NET logic to XSL renderingsThere are two types of XSL extensions: XSL
extension controls and XSL extension methods.

XSL extension controls are XML elements in the XSL code that correspond to .NET classes. For
example, the <sc:text> element corresponds to the .NET XSL extension control class
Sitecore.Web.UI.XslControls.Text. XSL extension controls are standalone elements in the XSL
code.

XSL extension methods correspond to methods in a class. For example, the sc: £1d () XSL extension
method corresponds to the £1d () method of the Sitecore.Xml.Xsl.XslHelper class represented
by the sc namespace. XSL extension methods appear within attribute values of XSL elements and
cannot stand alone.

In general, XSL extension methods are easier to write, more flexible to use, and expose more
functionality than XSL extension controls more efficiently, but XSL extension controls result in more
readable code syntax.

Note
Unless otherwise specified, all XSL extensions controls and methods work with the current version of
each item in the context language.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 31 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

4.5 Sitecore XSL Extension Controls

Sitecore provides several .NET XSL extension controls to simplify various rendering functions.

45.1 Common Attributes

Several of the XSL extension controls described in this chapter accepts the attributes described in the
following sections.

The show-title-when-blank Attribute

A value of true inthe show-title-when-blank attribute causes the layout engine to output the name
of the data template field before the inline editing control in the Page Editor if the field is empty, which can
help CMS users locate empty fields.

<sc:text field="FieldName" show-title-when-blank="true" select="$sc_currentitem" />

The disable-web-editing Attribute

A value of true for the disable-web-editing attribute disables web editing for the field in the Page
Editor. You can also disable web editing by using the sc:f1d () XSL extension method instead of
sc:field (), or by passing a third parameter to sc: field().

<sc:text field="FieldName" select="$sc currentitem" />

<xsl:value-of select="sc:field('FieldName', $sc currentitem)" disable-output-
escaping="yes" />

<sc:text field="FieldName" disable-web-editing="true" select="$sc_currentitem" />

<xsl:value-of select="sc:fld('FieldName',$sc currentitem)" />

<xsl:value-of select="sc:field('FieldName', $sc currentitem, 'disable-web-editing=true')"
disable-output-escaping="yes" />

The select Attribute

The select attribute controls the item on which the control operates. If you do not specify a value for the
select attribute, the control operates on the context element.

Arbitrary Attributes

The <sc:image> and <sc:1ink> XSL extension controls pass any unrecognized attributes to the
HTML element they generate.

For example:

<sc:image border="1" ...
<sc:link class="CSSClass" ...

452 The Sitecore XSL Extension Controls

This section describes the individual Sitecore XSL extension controls.

Note

The <sc:html>, <sc:memo>, and <sc:text> XSL extension controls are very similar. The only
significant implementation difference between these XSL extension controls is that <sc : memo> supports
the 1ine-breaks attribute.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 32 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

The <sc:date> XSL Extension Control
The <sc:date> XSL extension control outputs the value of a Date or Datetime field.
The <sc:date> XSL extension control requires the following attribute:

e field: The name of the Date or Datetime field.

The <sc:date> XSL extension control accepts the following optional attributes:
e format: The .NET format pattern.®
e select: The item containing the Date or Datetime field.
e disable-web-editing: See the preceding section The disable-web-editing Attribute.

The sc: formatdate () XSL extension method provides functionality equivalent to that of the
<sc:date> XSL extension control.

<sc:date field="FieldName" format="d" select="$sc_currentitem" />
<xsl:value-of select="sc:formatdate(sc:fld("FieldName",$sc_currentitem),'d')" />

The <sc:dot> XSL Extension Control

The <sc:dot> XSL extension control generates a content marker in the Page Editor. Content markers
support editing content while browsing a virtual copy of the web site.

The <sc:dot> XSL extension control does not require any attributes.
The <sc:dot> XSL extension control accepts the following optional attribute:
e select: The item to associate with the content marker.

The dot :Render () XSL extension method provides functionality equivalent to that of the <sc:dot>
XSL extension control.

<sc:dot select="$sc currentitem" />
<xsl:value-of select="dot:Render ($sc_currentitem)" />

Important

When possible, use inline editing features instead of content markers.

The <sc:html> XSL Extension Control

The <sc:html> XSL extension control outputs the value of a Rich Text field.
The <sc:html> XSL extension control requires the following attribute:

e field: The name of the Rich Text field.

The <sc:html> XSL extension control accepts the following optional attributes:
e select: The item containing the Rich Text field.
e disable-web-editing: See the preceding section The disable-web-editing Attribute.

e show-title-when-blank: See the preceding section The show-title-when-blank Attribute.

5 For information about .NET date format patterns, see http://msdn.microsoft.com/en-
us/library/97x6twsz.aspx.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 33 of 47

http://msdn.microsoft.com/en-us/library/97x6twsz.aspx
http://msdn.microsoft.com/en-us/library/97x6twsz.aspx

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

The sc:£1d () and sc:field () XSL extension methods provide functionality equivalent to that of the
<sc:html> XSL extension control.

<sc:html field="FieldName" select="$sc_currentitem" />

<xsl:value-of select="sc:field('FieldName',S$sc currentitem)" disable-output-
escaping="yes" />

<sc:html field="FieldName" select="$sc currentitem" disable-web-editing="true" />

<xsl:value-of select="sc:fld('FieldName', $sc_currentitem)" />

The <sc:image> XSL Extension Control

The <sc:image> XSL extension control outputs an HTML image () element using the image
referenced in an Image field.

The <sc:image> XSL extension control requires the following attribute:

e field: The name of the Image field.

The <sc:image> XSL extension control accepts the following optional attributes:
e select: The item containing the field.
e w: Width in pixels.
¢ h: Height in pixels.
e mw: Maximum width in pixels.
¢ mh: Maximum height in pixels.
e 1la: Language (defaults to context language).
e vs: Version (defaults to latest version).
e db: Database name (defaults to context database).
e bc: Background color (defaults to black).
e as: Allow stretch (defaults to false, set to 1 for true).
e sc: Scale by floating point number (.25 = 25%).
e thn:Thumbnail (set to 1 for true).

e disable-web-editing: See the preceding section The disable-web-editing Attribute.

Note

Attributes of the <sc: image> XSL extension control that affect height and width do not correspond to the
HTML height and width attributes of the element. Image manipulation such as resizing occurs
on the server to minimize network traffic to transfer the image from the server to the client.

The <sc:image> XSL extension control passes unrecognized attributes to the element it
generates.

<sc:image field="FieldName" select="$sc currentitem" border="1" thn="1"/>
You can use the sc:£1d () XSL extension method to access the individual properties of an Image field.

<img src="{sc:fld('FieldName', $sc _currentitem, 'src')}"
alt="{sc:fld('FieldName', $sc_currentitem, 'alt')}" />

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 34 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

The <sc:link> XSL Extension Control
The <sc:1ink> XSL extension control generates an HTML anchor (<a>) element.
The <sc:1ink> XSL extension control does not require any attributes.
The <sc:1ink> XSL extension control accepts the following optional attributes:
e field: The name of the Image field.
e select: The item containing the field.
e text: The text content that the user will click in the HTML <a> tag.
e disable-web-editing: See the preceding section The disable-web-editing Attribute.
By default, the <sc:1ink> XSL extension control generates a link to the item represented by the context
element. To link to a specific item, specify that item using the select attribute. To link as specified in a
field of type General Link in the context element, pass the name of the field to the control using the

field attribute. To link as specified in a General Link field in a specific item, pass both the select and
the field attributes.

You can specify the text of the link using the text attribute, or the text value of the <sc:1ink> element.
If you specify both, the layout engine ignores the text attribute, even if the text value evaluates to an
empty string.

<sc:link text="click here" />
<sc:link text="this is ignored">this is output</sc:link>

The <sc:1ink> XSL extension control passes unrecognized attributes to the <a> element it generates.

<sc:link class="CSSClass" />

You can use the sc: £1d () XSL extension method to access the individual properties of a General Link
field.

<xsl:if test="sc:fld('FieldName', $sc_currentitem, 'linktype')="'mailto'">

Note
In the Page Editor, using sc:field () as a parameter to <sc:1ink> XSL extension control may result
in a link looking incorrect because of including markup. To prevent this, use sc: £1d () instead:

<sc:link select="S$home">
<xsl:value-of select="sc:fld('Title', Shome)" />
</sc:link>

Also, you can pass the following attribute to <sc:1ink> to disable inline editing in the Page Editor:

disable-web-editing="true"

The <sc:memo> XSL Extension Control
The <sc:memo> XSL extension control outputs the value of a Multi-Line Text field.
The <sc:memo> XSL extension control requires the following attribute:

e field: The name of the Multi-Line Text field.

The <sc:memo> XSL extension control accepts the following optional attributes:

e select: The item containing the Multi-Line Text field.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 35 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

e line-breaks: Replacement characters for line feeds in the Multi-Line Text field.
e disable-web-editing: See the preceding section The disable-web-editing Attribute.
e show-title-when-blank: See the preceding section The show-title-when-blank Attribute.

The sc:£1d () and sc:field () XSL extension methods provide functionality equivalent to that of the
<sc:memo> XSL extension control.

<sc:memo field="FieldName" select="S$sc currentitem" />

<xsl:value-of select="sc:field('FieldName', $Ssc_currentitem)" disable-output-
escaping="yes" />

<xsl:value-of select="sc:fld('FieldName', $sc currentitem)" />

<sc:memo field="FieldName" select="$sc currentitem" line-breaks="¢
" />

The <sc:sec> XSL Extension Control

The <sc:sec> XSL extension control causes the XSL transformation engine to process the enclosed
segment of code if the context user has the designated access right to an item.

The <sc:sec> XSL extension control accepts the following attributes:
e require: Access right code.
e select: The item for which to evaluate the access right.
The require attribute supports the following access rights:
e item:admin: Administer access right.
e item:create: Create access right: item:create.
e item:delete: Delete access right.
e item:read: Read access right.
e item:rename: Rename access right.
e item:write: Write access right.

For example:

<sc:sec reg="item:delete" select="$sc currentitem">
<sc:sec reg="item:create" select="$sc_currentitem">
<!--the context user has both delete and create access rights to the context item-->
</sc:sec>
</sc:sec>

The sc:HasRight () XSL extension method provides functionality equivalent to that of the <sc:sec>
XSL extension control.

<xsl:if test="sc:HasRight ("item:delete", $sc_currentitem)">

The <sc:text> XSL Extension Control

The <sc:text> XSL extension control outputs the value of a Single-Line Text field or other simple text
field.

The <sc:text> XSL extension control requires the following attribute:

e field: The name of the Single-Line Text field.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 36 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ sitecore

The <sc:text> XSL extension control accepts the following optional attributes:
e select: The item containing the Single-Line Text field.
e disable-web-editing: See the preceding section The disable-web-editing Attribute.

e show-title-when-blank: See the preceding section The show-title-when-blank Attribute.

The sc:£1d () and sc:field () XSL extension methods provide functionality equivalent to that of the
<sc:text> XSL extension control.

<sc:text field="FieldName" select="$sc currentitem" />

<xsl:value-of select="sc:fld('FieldName',$sc currentitem)" />

<xsl:value-of select="sc:field('FieldName', $sc currentitem)" disable-output-
escaping="yes" />

The <sc:disableSecurity> XSL Extension Control

The <sc:disableSecurity> XSL extension control causes the XSL transformation engine to disable
security checks while evaluating the enclosed XSL code, causing that code to execute in the security
context of an administrative user.

The <sc:disableSecurity> XSL extension control does not accept any attributes.

For more information about the <sc:disableSecurity> XSL extension control, see the following
section The <sc:enableSecurity> XSL Extension Control.

The <sc:enableSecurity> XSL Extension Control

The <sc:enableSecurity> XSL extension control causes the XSL transformation engine to apply
security while evaluating the enclosed XSL code, causing that code to execute in the security context of
the context user.

Because security applies by default, you do not need to use <sc:enableSecurity> except within
<sc:disableSecurity>. For example:

<!--the system enforces security while processing this segment of code-->
<sc:disableSecurity>
<!--the system ignores security while processing this segment of code-->
<sc:enableSecurity>
<!--the system enforces security while processing this segment of code-->
</sc:enableSecurity>
<!--the system ignores security while processing this segment of code-->
</sc:disableSecurity>
<!--the system enforces security while processing this segment of code-->

The <sc:enableSecurity> XSL extension control does not accept any attributes.

The sc:EnterSecurityState () and sc:ExitSecurityState () XSL extension methods provide
functionality equivalent to that of the <sc:disableSecurity> and <sc:enableSecurity> XSL
extension controls.

<xsl:value-of select="sc:EnterSecurityState(false())" />
<!--the system ignores security while processing this segment of code-->
<xsl:value-of select="sc:ExitSecurityState()" />

The <xs1:value-of> elements call the XSL extension methods, but generate no output.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 37 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

4.6 Sitecore XSL Extension Methods

This section describes some of the Sitecore XSL extension methods available to XSL renderings.

4.6.1 The sc Namespace : The Sitecore.Xml.Xsl.XsIHelper Class

This section describes the most frequently used Sitecore XSL extension methods, which are in the
Sitecore.Xml.Xsl.XslHelper class represented by the sc namespace.

Important

The Sitecore.Xml.Xsl.XslHelper class exposes a number of XSL extension methods not
documented in this section. For more information about these methods, see the Sitecore API
documentation.®

The sc:fld() XSL Extension Method
The sc:£1d () XSL extension returns the raw value of a field, or the value of an attribute within an XML
field value. The following example creates a variable using the value of a field in the context item:

<xsl:variable name="VariableName" select="sc:fld('FieldName',$sc_currentitem)" />

A common use of sc: £1d () is to determine if a Checkbox field is selected. A Checkbox field stores the
value 1 if the user selects the checkbox. Always check for this value to determine whether the user has
selected the checkbox.

<xsl:if test="sc:fld("FieldName",$sc currentitem)!='1")">
<!--checkbox field does not exist in context item or the user has not selected it-->
</xsl:if>

Certain types of fields, including Image, File, and General Link, represent their value using a single XML
element with a number of attributes. You can pass a third parameter to sc: £1d () to retrieve the value of
a specific attribute. For example, to generate a link based on field of type File, you could use the

sc:f1d () method to retrieve the src attribute from the field value:

<xsl:variable name="src" select="sc:fld('FieldName', $sc currentitem, 'src')" />
<xsl:if test="$src">

<xsl:value-of select="concat('/',6S$src)" />

</xsl:if>

To access the media item referenced by a File field, use the sc:item () method to retrieve the item
referenced by the mediaid attribute.

<xsl:variable name="mediaid" select="sc:fld('FieldName', $sc currentitem, 'mediaid')" />
<xsl:if test="Smediaid">
<xsl:variable name="mediaitem" select="sc:item($mediaid, $sc_currentitem)" />
<xsl:if test="$mediaitem">

<xsl:choose>
<xsl:when test="sc:fld('title', Smediaitem) ">
<sc:text field="title" select="$mediaitem" />
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="S$mediaitem/@name" />
</xsl:otherwise>
</xsl:choose>

</xsl:if>

6 For access to the Sitecore APl documentation, see
http://sdnb5.sitecore.net/Reference/Sitecore%206.aspx.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 38 of 47

http://sdn5.sitecore.net/Reference/Sitecore%206.aspx

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

</xsl:if>

Important

The sc:fld() XSL extension method does not rewrite links to use friendly URLS, for example when
retrieving the value of a Rich Text field. To rewrite links, use the sc: field () XSL extension method as
described in the following section The sc:field() XSL Extension Method.

The sc:field() XSL Extension Method
The sc:field () XSL extension method returns the value of a field and includes markup to support
inline editing if the user is inline editing in the Page Editor.

<xsl:value-of select="sc:field('FieldName', $Ssc_currentitem)" disable-output-
escaping="yes" />

You can pass parameters, including those used to resize images, using a third parameter. For example,
to process an image field using parameters equivalent to the attributes supported by the <sc:image>
XSL extension control:

<xsl:value-of select="sc:field('FieldName', $sc currentitem, 'disable-web-
editing=yes& thn=1&border=1")" disable-output-escaping="yes" />

The sc:item() XSL Extension Method

The sc:item () XSL extension method returns the <item> element corresponding to the ID or short
path specified by the first parameter.

<xsl:variable name="content" select="/item[Q@key='sitecore']/item[@key="content']" />
<xsl:variable name="content" select="sc:item('/sitecore/content', $sc_currentitem)"/>
<xsl:variable name="content" select="sc:item('{110D559F-DEA5-42EA-9C1C-8A5DF7E70EF9}"',.)" />

<xsl:value-of select="S$content/@name" />

Important
You must pass an element in the XML document containing the referenced item as the second parameter
to the sc:item () extension method.

You can determine if the referenced item exists and the context user has the item: read access right to
it by checking the value returned by the sc:item () XSL extension method. For example:

<xsl:variable name="content" select="sc:item('/sitecore/content',.)" />
<xsl:if test="S$content">

<xsl:value-of select="$content/@name" />
</xsl:if>

The sc:path() XSL Extension Method

The sc:path () XSL extension method returns the friendly URL of a content item.

The sc:GetMediaUrl() XSL Extension Method

The sc:GetMediaUrl () XSL extension method returns the friendly URL of a media item. Replace the
FieldName parameter in the sample code below with a valid field name for a field of Field Type Image or
File.

<xsl:variable name="mediaid" select="sc:fld('FieldName', $sc currentitem, 'mediaid')" />
<xsl:if test="$mediaid">
<xsl:variable name="mediaitem" select="sc:item(Smediaid,.)" />

<xsl:if test="Smediaitem">

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 39 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

<xsl:value-of select="S$mediaitem/@name" />
</xsl:if>
</xsl:if>

Important

Sitecore does not prefix the URL of the media item with a slash (“/”) character automatically. This can
result in URLs that exceed browser or server limits. Prefix media URLs with slash characters when
necessary.

The sc:pageMode() XSL Extension Method

The sc:pageMode () XSL extension method returns an XML structure indicating the client mode, such
as Preview, Page Editor, or the Debugger, with and without different features enabled. You can use this
information to output markup exposing different features in different modes. For more information about
using the page mode, see the Client Configuration Cookbook.”

The sc:IsltemOfType() XSL Extension Method

The sc:IsItemOfType () XSL extension method returns true if an item is based on a data template that
inherits from a specific base data template.
<xsl:if test="sc:IsItemOfType ('basetemplate',$sc currentitem)">

<xsl:if test="$sc currentitem/@template='basetemplate' or
sc:IsItemOfType ('basetemplate’', $sc currentitem) ">

Important

The sc:IsItemOfType () method returns false for items that inherit directly from the specified base
template. Both call the sc: IsTtemOfType () XSL extension method and compare the template name
directly when necessary:

<xsl:if test="sc:IsItemOfType ('basetemplate',$sc currentitem) or
S$sc_currentitem/@template='basetemplate'">

The sc:Split() XSL Extension Method

The sc:sSplit () XSL extension method returns an XML structure containing the IDs of the items
selected in a selection field. You can use the sc:Split () XSL extension method to process the values
in a Tree, Multilist, Treelist, or other field allowing selection of zero or more Sitecore items. For example:
<xsl:for-each select="sc:Split ('FieldName', $sc_currentitem)">
<xsl:for-each select="sc:item(text(),S$sc _currentitem)">
<xsl:value-of select="Q@name" />

</xsl:for-each>
</xsl:for-each>

Note
The sc:Split () XSL extension method does not confirm the existence of items corresponding to the
IDs contained in the field value.

The sc:formatdate() XSL Extension Method

The sc:formatdate () XSL extension method returns a formatted string based on a date value stored
in the 1ISO format used by Sitecore. For more information about formatting dates, see the previous
sections The translate() Function and The <sc:date> XSL Extension Control.

7 To access the Client Configuration Cookbook, see
http://sdnb5.sitecore.net/Reference/Sitecore%206.aspx.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 40 of 47

http://sdn5.sitecore.net/Reference/Sitecore%206.aspx

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

<xsl:value-of select="sc:formatdate(sc:fld('FieldName',$sc_currentitem),'d')" />

The sc:ToLower() XSL Extension Method
The sc:ToLower () XSL extension method returns the lowercase value of a string. The following
condition is always true:

<xsl:if test="sc:ToLower ($sc_currentitem/@name)=$currentitem/Qkey">

Important
XPath is case-sensitive. Always convert values to a consistent character case before comparision.

The sc:trace() XSL Extension Method

The sc:trace () XSL extension method writes a message to the trace log visible in the Sitecore
debugger. For example:

<xsl:value-of select="sc:trace (concat ('Context element item path: ',sc:path(.)))" />

In this case, the <xs1:value-of> element generate no output, but calls the sc:trace () XSL
extension method to write a message to the trace.

The sc:qs() XSL Extension Method

The sc:gs () XSL extension method returns the value of a URL query string parameter.

<xsl:choose>
<xsl:when test="sc:ToLower (sc:gs ('ParameterName'))="true' or sc:gs('ParameterName')="1"'">
<!--URL query string parameter is true-->
</xsl:when>
<xsl:otherwise>
<!--URL query string parameter is not true-->
</xsl:otherwise>
</xsl:choose>

The sc:random() XSL Extension Method

The sc:random () XSL extension method returns a somewhat random integer as returned by
System.Random.Next (int) .8 For example, to generate a number between one and ten:

<xsl:variable name="VariableName" select="sc:random(1l1l)" />

4.6.2 Additional XSL Extension Method Classes

This section describes several additional classes that you can use as XSL extension method libraries. For
information about these libraries, see Sitecore API documentation.®

Excluding content marker functionality, the only class containing XSL extension methods provided by the
default boilerplate file used to create XSL renderings is the Sitecore.Xml.Xsl.XslHelper class
represented by the sc namespace. This class contains the most frequently used XSL extension methods.

To use additional extension libraries, update the XSL rendering header as shown for each additional
extension library.

8 For information about System.Random.Next (int), see http://msdn.microsoft.com/en-
us/library/system.random.next.aspx.

9 For access to the Sitecore API documentation, see
http://sdn5.sitecore.net/Reference/Sitecore%206.aspx.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 41 of 47

http://msdn.microsoft.com/en-us/library/system.random.next.aspx
http://msdn.microsoft.com/en-us/library/system.random.next.aspx
http://sdn5.sitecore.net/Reference/Sitecore%206.aspx

Sitecore CMS 6 Presentation Component XSL Reference @ sitecore

The dateutil Namespace : Sitecore.DateUtil

You can use some of the methods in the Sitecore.DateUtil class as XSL extension methods.

xmlns:dateutil="http://www.sitecore.net/dateutil"
exclude-result-prefixes="dot sc dateutil”

Note
The sc namespace contains the most frequently used methods for manipulating dates.

The stringutil Namespace : Sitecore.StringUtil

While there are some methods for manipulating strings in Sitecore.xXml.Xsl.XslHelper, there are
additional helpful methods for manipulating strings in the Sitecore.StringUtil class that you can
use as XSL extension methods.

xmlns:stringutil="http://www.sitecore.net/stringutil"
exclude-result-prefixes="dot sc stringutil"

The mainutil Namespace : Sitecore.MainUtil

There are some miscellaneous methods in the Sitecore.MainUtil class that you can use as XSL
extension methods.

xmlns: mainutil ="http://www.sitecore.net/mainutil"
exclude-result-prefixes="dot sc mainutil”

The sgl Namespace : Sitecore.Xml.Xsl.SqlHelper

There are some helpful methods for working with SQL databases in the
Sitecore.Xml.Xsl.Sglhelper class that you can use as XSL extension methods.

xmlns:sql="http://www.sitecore.net/sql"
exclude-result-prefixes="dot sc sql"

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 42 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

Custom XSL Extension Libraries

This chapter provides techniques for implementing custom .NET XSL extensions.
Use custom XSL extensions:

e To perform resource-intensive operations.

e Toincrease readability of the code used for complex operations

e To access data in a system other than the current Sitecore database.

This chapter contains the following section:

e Custom XSL Extension Methods

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 43 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

51 Custom XSL Extension Methods

This section provides procedures for implementing custom XSL extension methods using .NET. You can
register your own XSL namespace containing custom XSL extension methods, or add methods to the
default sc namespace.

5.1.1 How to Register a Custom XSL Extension Method Library

You can register any class as a custom XSL extension method library. The class does not need to
implement any interface or inherit from any specific base class.

To register a .NET class as an XSL extension library:
1. Inweb.config, navigate tothe /configuration/sitecore/xslExtensions element.

2. Within the <xs1Extensions> element, insert a new line based on the following.

<extension mode="on" type="Namespace.Class, Assembly" namespace="http://domain.tld/class
singleInstance="true"/>

3. Replace the values of the type and namespace attributes with the appropriate class signature
and URL.

Note
The namespace must be a valid, unique URL, but it does not have to be a valid Web page.

To use the new extension in XSL renderings and the boilerplate file used for XSL renderings, map the
namespace to the URL and the exclude-result-prefixes attribute of the rendering.
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:sc="http://www.sitecore.net/sc"
xmlns:dot="http://www.sitecore.net/dot"

xmlns:namespace="http://www.domain.tld/class"
exclude-result-prefixes="dot sc namespace">

Important
Add the namespace to the exclude-result-prefixes attribute. Otherwise, the generated markup
may contain the namespace.

Tip
Consider adding the namespace definition to the boilerplate file used for XSL renderings.

5.1.2 How to Add Methods to the sc Namespace
To add methods to the sc hamespace, override Sitecore.Xml.Xsl.XslHelper.
1. Create a class that inherits from Sitecore.Xml.Xsl.XslHelper.

2. Inweb.config,inthe /configuration/sitecore/xslExtensions/extension element
with namespace http://www.sitecore.net/sc, replace the value of the type attribute with
the signature of your class. The sc hamespace then exposes the methods in your class as well
as the methods in the Sitecore.Xml.Xsl.Xs1lHelper base class.

<extension mode="on" type="Namespace.Class,Assembly"
namespace="http://www.sitecore.net/sc" singleInstance="true" />

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 44 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

5.1.3 How to Access Properties of an XSL Extension Method Library
Object

To access properties of an XSL extension class library object, use explicit get Property () and
set Property () methods. For example:
<xsl:if test="get PropertyName () ">

<xsl:value-of select="set PropertyName ('Propertyvalue')" />
</xsl:if>

In this case, the <xs1:value-of> XSL element sets the property, and does not generate any output.

5.1.4 XSL Extension Method Examples

This section contains examples of custom .NET XSL extension methods.

GetHome() — Return a Sitecore.Data.ltems.ltem

The boilerplate file for XSL renderings defines a variable named Shome using an XPath statement. This
variable is invalid if you use an XSL rendering on a site that does not have /Sitecore/Content/Home
as its start item. You can use an XSL extension method to determine the home item using logic rather
than hard-coding a path.

First determine the home item for the site. Then use the
Sitecore.Configuration.Factory.GetItemNavigator () method to convert the
Sitecore.Data.Items.Itemtothe System.Xml.XPath.XPathNodeIterator representation
used by XSL renderings.

namespace Namespace.Xml.Xsl
{
private Sitecore.Data.Items.Item GetHomeItem ()
{
Sitecore.Data.Database db = Sitecore.Context.Database;
Sitecore.Data.Items.Item home = database.GetItem(Sitecore.Context.Site.StartPath);
return (home) ;
}
public class XslHelper

{
public Sitecore.Xml.XPath.ItemNavigator GetHome ()
{
return (Sitecore.Configuration.Factory.CreateltemNavigator (GetHomeItem())) ;
}
public string GetHomelID ()
{
return (GetHomeItem () .ID.ToString ()) ;
}
}
}

Update the $Shome variable definition in XSL rendering and the boilerplate file used for new XSL
renderings.

<xsl:variable name="home" select="namespace:GetHome ()" />

Note

It is generally more efficient to process a string than it is to process an XML structure. When possible, use
a method that returns an ID as a string instead of returning an item as a
System.Xml.XPath.XPathNavigator. For example, unless you are already using the $home variable
and just need to update the logic used to define that variable, avoid defining the Shome variable. When
possible, use the GetHomeID () method instead of GetHome () . If you update the XSL rendering

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 45 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

boilerplate file as suggested above, comment out this variable declaration to avoid unnecessary
overhead. Developers can uncomment this line if they need this variable.

GetRandomSiblings() — Return Multuple Values Using XML

You can return a list from an XSL extension using a delimited string, or using XML. You can use this
technique to return a list of item IDs, which you can process using XSL code similar to that used with the
sc:Split () XSL extension method.

For example, a rendering needs to generate links to five random siblings of the context item, but never to
the context item itself, and without ever generating two links to the same sibling. The following extension
library class inherits from the Sitecore.Xml.Xsl.XslHelper class in order to use its

GetItem () method to retrieve the Sitecore.Data.Items.Item corresponding to a
System.Xml.XPath.XPathNodeIterator.

namespace Namespace.Xml.Xsl
{
public class XslHelper : Sitecore.Xml.Xsl.XslHelper
{
public XPathNodeIterator GetRandomSiblings (XPathNodeIterator iterator,int max)
{
Sitecore.Xml.Packet packet = new Sitecore.Xml.Packet ("values","");
iterator.MoveNext () ;
Sitecore.Data.Items.Item item = GetItem(iterator);
if(item != null)
{
Sitecore.Collections.ChildList children = item.Parent.Children;
if (children.Count>1)
{
if (max>children.Count-1)
{
max = children.Count-1;
}
List<Sitecore.Data.ID> ids = new List<Sitecore.Data.ID>();
Random rand = new Random() ;
while (ids.Count<max)
{
int index = rand.Next (children.Count) ;
if (children[index] .ID!=item.ID && 'ids.Contains(children[index].ID))
{
packet.AddElement ("value",children[index].ID.ToString()) ;
ids.Add (children[index] .ID) ;
}

}
}

XPathNavigator navigator = packet.XmlDocument.CreateNavigator();
if (navigator == null)

{

navigator = new XmlDocument () .CreateNavigator () ;

}

navigator.MoveToRoot () ;

navigator.MoveToFirstChild() ;

return navigator.SelectChildren (XPathNodeType.Element) ;

}
This code will return an XML structure such as the following:

<values>
<value>{ID}</value>

<value>{ID}</value>
</values>

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 46 of 47

Sitecore CMS 6 Presentation Component XSL Reference @ S teCO re

You can process this structure using code such as the following:

<xsl:for-each select="namespace:GetRandomSiblings(.,5)">
<xsl:for-each select="sc:item(text(),S$sc currentitem)">
<sc:link>
<xsl:value-of select="Q@name" />

</sc:link>
</xsl:for-each>
</xsl:for-each>

Note
This code is provided only for demonstration purposes and could be very inefficient with a small number
of siblings.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 47 of 47

	Chapter 1 Introduction
	Chapter 2 Basic XSL and XPath Constructs
	2.1 XML, XSL, and XPath Tokens
	2.2 XSL Elements
	2.2.1 The <xsl:variable> XSL Element
	2.2.2 The <xsl:value-of> XSL Element
	2.2.3 The <xsl:if> XSL Element
	2.2.4 The <xsl:choose, <xsl:when>, and <xsl:otherwise> XSL Elements
	2.2.5 The <xsl:for-each> XSL Element
	2.2.6 The <xsl:sort> XSL Element
	2.2.7 The <xsl:template> , <xsl:call-template>, and <xsl:with-param> XSL Elements
	2.2.8 The <xsl:apply-templates> XSL Element

	2.3 XPath and XSL Functions
	2.3.1 The position() Function
	2.3.2 The last() Function
	2.3.3 The current() Function
	2.3.4 The document() Function
	2.3.5 The concat() Function
	2.3.6 The translate() Function
	2.3.7 The true() Function
	2.3.8 The false() Function
	2.3.9 The not() Function
	2.3.10 The count() Function
	2.3.11 The contains() Function

	Chapter 3 The Sitecore XML Structure
	3.1 Working with Items
	3.1.1 Item Attributes
	3.1.2 Item Fields

	3.2 XPath Navigation
	3.2.1 Elements and Items
	3.2.2 Specific Items
	The Context Item: $sc_currentitem
	The Data Source Item : $sc_item
	The Context Element : .
	The Current Element
	Item Variables Using XPath
	Item Variables Using sc:item()
	Pass Items to XSL Renderings Using the <xsl:param> XSL Element

	3.2.3 Item References
	3.2.4 Implicit Relationships (XPath Axes)
	The Self Axis
	The Child Axis
	The Parent Axis
	The ancestor and ancestor-or-self Axes
	Descendants and Recursion

	3.3 Selecting Items
	3.3.1 How to Select Items Based on a Specific Data Template
	3.3.2 How to Select Items with a Version in the Context Language
	3.3.3 How to Select Items with Children

	Chapter 4 XSL and XPath with Sitecore
	4.1 The Sitecore XSL Boilerplate File
	4.2 XSL Error Management
	4.3 Working with Fields
	4.3.1 File Drop Area Fields

	4.4 Overview of XSL Extension Controls and Methods
	4.5 Sitecore XSL Extension Controls
	4.5.1 Common Attributes
	The show-title-when-blank Attribute
	The disable-web-editing Attribute
	The select Attribute
	Arbitrary Attributes

	4.5.2 The Sitecore XSL Extension Controls
	The <sc:date> XSL Extension Control
	The <sc:dot> XSL Extension Control
	The <sc:html> XSL Extension Control
	The <sc:image> XSL Extension Control
	The <sc:link> XSL Extension Control
	The <sc:memo> XSL Extension Control
	The <sc:sec> XSL Extension Control
	The <sc:text> XSL Extension Control
	The <sc:disableSecurity> XSL Extension Control
	The <sc:enableSecurity> XSL Extension Control

	4.6 Sitecore XSL Extension Methods
	4.6.1 The sc Namespace : The Sitecore.Xml.Xsl.XslHelper Class
	The sc:fld() XSL Extension Method
	The sc:field() XSL Extension Method
	The sc:item() XSL Extension Method
	The sc:path() XSL Extension Method
	The sc:GetMediaUrl() XSL Extension Method
	The sc:pageMode() XSL Extension Method
	The sc:IsItemOfType() XSL Extension Method
	The sc:Split() XSL Extension Method
	The sc:formatdate() XSL Extension Method
	The sc:ToLower() XSL Extension Method
	The sc:trace() XSL Extension Method
	The sc:qs() XSL Extension Method
	The sc:random() XSL Extension Method

	4.6.2 Additional XSL Extension Method Classes
	The dateutil Namespace : Sitecore.DateUtil
	The stringutil Namespace : Sitecore.StringUtil
	The mainutil Namespace : Sitecore.MainUtil
	The sql Namespace : Sitecore.Xml.Xsl.SqlHelper

	Chapter 5 Custom XSL Extension Libraries
	5.1 Custom XSL Extension Methods
	5.1.1 How to Register a Custom XSL Extension Method Library
	5.1.2 How to Add Methods to the sc Namespace
	5.1.3 How to Access Properties of an XSL Extension Method Library Object
	5.1.4 XSL Extension Method Examples
	GetHome() – Return a Sitecore.Data.Items.Item
	GetRandomSiblings() – Return Multuple Values Using XML

