
Sitecore CMS 6 
Presentation Component Reference Rev. 080630 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved. 
 

Sitecore CMS 6 

Presentation Component 
Reference 
A Conceptual Overview for CMS Administrators, Architects, and Developers  



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 2 of 34 

 

Table of Contents 

Chapter 1 Introduction ................................................................................................................................ 4 
Chapter 2 Presentation Components ......................................................................................................... 5 

2.1 Layout Engine Overview ............................................................................................................... 6 
2.2 Layouts (ASP.NET .aspx Web Forms) ......................................................................................... 7 

2.2.1 Layout Implementation .............................................................................................................. 7 
2.2.2 Layout Usage ............................................................................................................................ 7 

2.3 Sublayouts (ASP.NET .ascx Web User Controls)......................................................................... 9 
2.3.1 Sublayout Implementation ......................................................................................................... 9 
2.3.2 Sublayout Usage ....................................................................................................................... 9 

2.4 Renderings .................................................................................................................................. 10 
2.4.1 Rendering Implementation ...................................................................................................... 10 
2.4.2 Rendering Usage .................................................................................................................... 10 
2.4.3 Rendering Types ..................................................................................................................... 10 

Sublayouts as Renderings ............................................................................................................... 10 
XSL Renderings ............................................................................................................................... 10 
Web Control Renderings .................................................................................................................. 10 
Method Renderings .......................................................................................................................... 11 
URL Renderings ............................................................................................................................... 11 
Web Part Renderings ....................................................................................................................... 11 

2.4.4 Rendering Data Source ........................................................................................................... 11 
2.4.5 Rendering Parameters ............................................................................................................ 12 
2.4.6 Field Renderer Web Control ................................................................................................... 12 

2.5 Placeholders................................................................................................................................ 13 
2.5.1 Placeholder Implementation .................................................................................................... 13 
2.5.2 Placeholder Keys .................................................................................................................... 13 
2.5.3 Placeholder Settings ............................................................................................................... 14 
2.5.4 Placeholder Usage .................................................................................................................. 14 

2.6 XML Layouts, XML Controls, XML Dialogs, and XML Forms ..................................................... 15 
Chapter 3 Request Processing ................................................................................................................ 16 

3.1 The Sitecore Layout Engine ........................................................................................................ 17 
3.1.1 The Context Item ..................................................................................................................... 17 

3.2 Devices ........................................................................................................................................ 18 
3.2.1 Device Implementation ............................................................................................................ 18 

Fallback Device ................................................................................................................................ 18 
3.2.2 Device Usage .......................................................................................................................... 18 

3.3 Layout Details.............................................................................................................................. 20 
3.3.1 Layout Details Implementation ................................................................................................ 20 
3.3.2 Layout Details vs. ASP.NET Master Pages ............................................................................ 20 

Chapter 4 Developer Center and Microsoft Visual Studio ....................................................................... 22 
4.1 Developer Center vs. Visual Studio ............................................................................................ 23 
4.2 Presentation Component Definition Items .................................................................................. 24 

Chapter 5 Output Caching ....................................................................................................................... 25 
5.1 Rendered Output Caching Options ............................................................................................. 26 
5.2 Rendered Output Caching Implementation ................................................................................. 27 

5.2.1 Which Cache Settings Apply? ................................................................................................. 27 
5.2.2 Output Caching Properties ...................................................................................................... 28 

Cacheable ........................................................................................................................................ 28 
VaryByData ...................................................................................................................................... 29 
VaryByDevice ................................................................................................................................... 29 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 3 of 34 

 

VaryByLogin ..................................................................................................................................... 29 
VaryByParm ..................................................................................................................................... 29 
VaryByQueryString .......................................................................................................................... 30 
VaryByUser ...................................................................................................................................... 30 

Chapter 6 Choosing Presentation Technology ........................................................................................ 31 
6.1 General Presentation Technology Considerations ..................................................................... 32 
6.2 Specific Presentation Technology Considerations...................................................................... 33 

6.2.1 Sublayout Considerations ....................................................................................................... 33 
6.2.2 XSL Rendering Considerations ............................................................................................... 33 
6.2.3 Web Control Considerations ................................................................................................... 34 
6.2.4 Method Rendering Considerations.......................................................................................... 34 

 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 4 of 34 

 

Chapter 1  

Introduction 

This document provides a conceptual overview of Sitecore’s layout engine as well as 
detailed explanations of the Sitecore presentation components for CMS architects, 
developers, and administrators. 

This document assists in the identification and definition of the presentation components 
required to implement a Sitecore solution. Understanding how the layout engine enhances 
the ASP.NET page assembly process aids in defining requirements data structures and 
reusable presentation components, as well as diagnosing problems with a Web site. 
Effective implementation of the layout engine minimizes development, maintenance and 
administration costs.  

This document contains the following chapters: 

Chapter 1 — Introduction 
Introduces the topics discussed in this document. 

Chapter 2 — Presentation Components 
Describes the presentation components used by the Sitecore layout engine to service 
HTTP requests. 

Chapter 3 — Request Processing 
Describes the Sitecore layout engine enhancements to the ASP.NET page assembly 
process. 

Chapter 4 — Developer Center and Microsoft Visual Studio 
Describes how developers use Sitecore Developer Center and Microsoft Visual Studio to 
maintain presentation components. 

Chapter 5 — Output Caching 
Describes how developers use presentation component caching options to increase 
performance. 

Chapter 6 — Choosing Presentation Technology 
Guidelines for choosing the appropriate rendering technology for a specific presentation 
component. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 5 of 34 

 

Chapter 2  

Presentation Components 

This chapter contains a short overview of the layout engine and detailed information 
about the presentation components it uses.  

This chapter contains the following sections: 

 Layout Engine Overview 

 Layouts (ASP.NET .aspx Web Forms) 

 Sublayouts (ASP.NET .ascx Web User Controls) 

 Renderings 

 Placeholders 

 XML Layouts, XML Controls, XML Dialogs, and XML Forms 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 6 of 34 

 

2.1 Layout Engine Overview 

Sitecore’s layout engine extends the ASP.NET Web application server to separate content from 
presentation until Sitecore generates a response to a page request. The layout engine dynamically 
merges data with code according to layout details defined in the requested content item, automatically 
accounting for the user’s context such as language, device, and access rights. 

The Sitecore layout engine uses ASP.NET. ASP.NET represents pages as hierarchies of .NET objects 
called controls. Each control is responsible for rendering a different component on the page. 

Sitecore adds facilities beyond those provided by the underlying ASP.NET constructs. These facilities 
include: 

 The ability to easily invoke XSL transformations in addition to .NET logic. 

 The ability to bind controls to placeholders dynamically and declaratively during page requests 
using layout details. 

 The ability to cache the output of individual presentation components by various criteria. 

Layout details in each content item or the standard values item associated with the item’s data template 
control the presentation components the layout engine uses to service HTTP requests from different 
types of devices. Each presentation component can access the entire CMS database, including all 
content, metadata, item relations, and configuration settings. 

Presentation components may generate different output depending on the user’s context, such as the 
user’s profile including security authorization, the requested language, and ASP.NET page and control 
events. Logic in the layout engine and individual presentation components applies the user’s session to 
process content in the CMS database or other systems. 

Sitecore provides the Developer Center application for registering and working with presentation 
components. Developers often manage presentation components using Microsoft Visual Studio and 
source code management systems. 

Important 
Sitecore URLs correspond to content items in the database that reference presentation components 
implemented as files on disk. Sitecore URLs do not correspond directly to files on disk, but to data items 
that reference ASP.NET and XSL presentation components implemented in files on disk. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 7 of 34 

 

2.2 Layouts (ASP.NET .aspx Web Forms) 

Layouts define the outermost markup superstructures shared to any number of responses to HTTP 
requests, such as the outer structure including a header and footer shared to all or most pages on a Web 
site. Developers use layouts: 

 To define the outermost markup shared to the greatest number of page views. 

 To define different outer dimensions for different pages, such as a specific form factor for a site’s 
home page that differs from all other pages. 

 To apply different presentations when different types of devices request a content item, such as 
formatting content differently for browsers and PDAs. 

2.2.1 Layout Implementation 

ASP.NET uses .aspx files, known as Web forms, to service HTTP requests. Sitecore layouts are 

ASP.NET Web forms registered with the content management system, including both a layout definition 

item and an .aspx file. Layouts definition items under /Sitecore/Layout/Layouts use the 

/Sitecore/Templates/System/Layout/Layout data template. The Path property in each layout 

definition item references the path to an .aspx file relative to the document root of the Web site. 

Each layout file contains markup representing a hierarchy of controls. Some controls are static literals, 
and others are dynamic server controls. The layout engine passes literals directly through to the response 
stream as markup elements. Server controls respond to page events and generate output dynamically. 
Server controls used with Sitecore include: 

 Sublayouts 

 XSL renderings 

 Web controls 

 Placeholders 

 URL renderings 

 Method renderings 

 Web parts 

Developers bind some server controls to layouts statically, at design time, by adding controls to layouts 
and sublayouts. Developers bind other server controls to placeholders in a layout dynamically, at runtime, 
using layout details. 

2.2.2 Layout Usage 

Each HTTP request activates at most a single layout. Sitecore and ASP.NET process some requests 
using other ASP.NET handlers that do not involve Sitecore layouts. Each logical Web site usually 
involves at least one layout per device. Layouts are generally the most reusable presentation component. 
Some Sitecore solutions use a single layout for all page views. 

Developers bind presentation components to the layout statically if they execute on every invocation of a 
layout. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 8 of 34 

 

Placeholders in layouts and sublayouts represent regions where developers use layout details to cause 
the layout engine to invoke different presentation components dynamically to service different types of 
requests.  

Tip 
Minimize the number of layouts required by dynamically binding presentation components using 
placeholders and layout details. 

Note 

Global logic generally belongs in pipelines or global.asax. Application logic belongs in application 

components such as sublayouts. Layouts generally do not use .NET code-behind and code-beside 
facilities. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 9 of 34 

 

2.3 Sublayouts (ASP.NET .ascx Web User Controls) 

Sublayouts define markup substructures intended for use within a layout or a sublayout nested in and 
bound statically or dynamically to a layout or a sublayout. Developers use sublayouts: 

 To contain markup substructures shared to multiple pages, where that substructure may functions 
as a superstructure for further nested components. 

 To reuse an outer shell defined in a common layout with different internal dimensions defined in 
the different sublayouts. 

 To further nest components dynamically using placeholders in sublayouts. 

 To implement ASP.NET applications. 

 To render output on a page. 

 To contain reusable groups of controls, such as a header sublayout that developers bind to 
multiple layouts that share a common collection of controls. 

2.3.1 Sublayout Implementation 

ASP.NET uses .ascx files, known as Web user controls, to service some portions of HTTP requests. 

Sitecore sublayouts are ASP.NET Web user controls registered with the content management system, 

including both a sublayout definition item and an .ascx file. Sublayout definition items under 

/Sitecore/Layout/Sublayouts use the /Sitecore/Templates/System/Layout/Sublayout 

data template. The Path property in each layout definition item references the path to an .ascx file 

relative to the document root of the Web site. 

Just like layouts, each sublayout contains a hierarchy of literal and dynamic server controls. Developers 
bind some server controls to sublayouts statically and others to placeholders in the sublayout dynamically 
using layout details. 

Each HTTP request invokes zero or more sublayouts to service portions of the request. The layout engine 
dynamically binds presentation components to placeholders in the layout and nested placeholders in 
sublayouts as specified in layout details. 

2.3.2 Sublayout Usage 

While developers can statically bind sublayouts to layouts and sublayouts, developers more frequently 
bind sublayouts to placeholders in layouts and sublayouts. Sublayouts may contain placeholders 
supporting nesting to any level. 

Developers commonly use sublayouts to implement ASP.NET applications. Sublayouts are therefore 
more likely than layouts to have code-behind or code-beside. The output of sublayouts, which may 
represent application data and content generated from multiple distinct presentation components, is often 
less reusable than the output of individual renderings. Sublayouts are therefore less likely than renderings 
to support output caching. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 10 of 34 

 

2.4 Renderings 

Renderings are individual presentation components that function as building blocks for published Web 
sites. Developers use renderings: 

 To present content. 

 To present data from external systems. 

 To perform back-end logic with no visual component, such as request logging. 

2.4.1 Rendering Implementation 

The layout engine uses Web controls to invoke all types of presentation components other than layouts, 
including sublayouts, XSL renderings, method renderings, URL renderings, and Web parts.  

2.4.2 Rendering Usage 

Developers add some renderings to layouts and sublayouts statically, causing the layout engine to invoke 
those renderings every time it processes that layout or sublayout. Developers dynamically bind other 
renderings to placeholders in layouts and sublayouts using layout details. 

2.4.3 Rendering Types 

Sitecore supports a variety of rendering technologies. For information about which technology to use for 
specific tasks, see Chapter 6, ‘Choosing Presentation Technology’. 

Sublayouts as Renderings 

Sublayouts can function as renderings to generate output on a page. 

XSL Renderings 

XSL renderings output the results of XSL transformations. The source for the XSL transformation is an 

XML representation of a Sitecore database, though an XSL rendering may use the document() function 

to access external XML resources. 

Web Control Renderings 

All ASP.NET pages are hierarchies of literal and dynamic server controls. ASP.NET Web controls are 
ASP.NET page elements implemented as classes that eventually inherit from 

System.Web.UI.Control in the .NET framework, typically through 

System.Web.UI.WebControls.WebControl. ASP.NET Web controls generate output dynamically 

and respond to page events, typically by ovedrriding the Render() method to generate output. 

Sitecore Web control renderings are ASP.NET controls that inherit from the Sitecore Web control base 

class Sitecore.Web.UI.WebControl, which inherits from 

System.Web.UI.WebControls.WebControl. Sitecore Web control renderings override the 

DoRender() method to generate output. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 11 of 34 

 

In addition to the features inherited from the ASP.NET base control class, Sitecore Web control 
renderings support:  

 Passing a data source item to the control. 

 Dynamic binding to placeholders. 

 Rendered output caching as described in Chapter 5, ‘Output Caching’. 

The Sitecore Web control base class provides additional convenience methods and properties for 
Sitecore developers.  

Note 
Web controls that do not use the Sitecore Web control features described previously may inherit directly 
from a .NET system class rather than inheriting from the Sitecore Web control base class. 

Tip 
The layout engine can dynamically bind Web controls that inherit from the Sitecore Web control base 
class to Sitecore placeholders, but cannot dynamically bind Web controls that inherit directly from the 
ASP.NET Web control base class. Developers can statically bind Web controls that inherit from the 
standard ASP.NET base class to a sublayout, and dynamically bind that sublayout to a placeholder. 

Method Renderings 

Method renderings write the string returned from a .NET method to the output stream. 

URL Renderings 

URL renderings request a URL and write the response to the output stream. Unlike iframes that make the 
browser request a URL, URL renderings request the URL on the server. If the response contains an 

HTML <body> element, the layout engine only outputs the contents of that element, not the <body> 

element itself or any elements outside the body element, such as <html>, <head>, or <form>.  

Web Part Renderings 

The optional Web parts framework allows developers to use of Web parts as renderings.
1
  

2.4.4 Rendering Data Source 

Each rendering can accept a source item specifying a location in a Sitecore database from which the 
rendering should begin processing. Developers pass a data source to a rendering: 

 To avoid hard-coding item paths or GUIDs, such as CSS classes or IDs. 

 To reuse renderings with different items. 

 To specify data for the rendering to process. 

The context item, which corresponds to the requested URL, is the default data source for all renderings 
for which the developer does not specify a data source. 

                                                      
1
 For more information about using Web parts with Sitecore, see 

http://sdn5.sitecore.net/Resources/Free%20Modules/Web%20Part%20Framework.aspx. 

http://sdn5.sitecore.net/Resources/Free%20Modules/Web%20Part%20Framework.aspx


Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 12 of 34 

 

2.4.5 Rendering Parameters 

Each rendering can accept any number of parameters. Developers pass parameters to renderings: 

 To avoid hard-coding content or configuration in a rendering.  

 To reuse renderings with different configurations. 

2.4.6 Field Renderer Web Control 

Sitecore provides the field renderer Web control to output a single field value, automatically providing 
inline editing controls in the Page Editor. Developers use the field renderer Web control to retrieve and 
format a single field value. 

The FieldRenderer Web control supports the following parameters: 
 

Parameter Function 

After Text to output after the field value (inside the closing 
EnclosingTag if supplied both). 

Before Text to output before the field value (inside the opening 
EnclosingTag if supplied both). 

DisableWebEditing True to disable inline editing of the field. 

EnclosingTag Markup element to wrap field value (for example, div). 

FieldName Name of field to process. 

 

The FieldRenderer Web control also supports the parameters defined by the Sitecore Web control base 

class. This base class defines the DataSource parameter, which controls the item from which Sitecore 

retrieves the field value. If the developer does not specify the DataSource parameter, the layout engine 

retrieves the field value from the context item. 

The Sitecore.Web.UI.WebControls.FieldRenderer class in the Sitecore.Kernel assembly 

provides the implementation of the field renderer Web control. The 

/Sitecore/Layout/Renderings/System/FieldRenderer Web control rendering definition item 

references this class, making it easy to drag this control onto a layout or sublayout in the Developer 
Center. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 13 of 34 

 

2.5 Placeholders 

Sitecore placeholders are ASP.NET controls that define named regions of layouts and sublayouts to 
which other controls bind dynamically according to layout details.

2
 Developers use placeholders: 

 To represent regions of a reusable layout or sublayout in which different components execute for 
different requests. 

 To invoke different presentation components in different regions of a markup structure without 
duplicating that markup structure. 

2.5.1 Placeholder Implementation 

Placeholders associate locations in a layout or sublayout with a name known as a placeholder key. The 
layout engine dynamically substitutes named placeholders with the various sublayouts and renderings 
associated with that key in the layout details for the requested item. 

Each layout and sublayout can contain any number of placeholders. Placeholders support nesting to any 
level; a sublayout may bind to a placeholder in a sublayout that binds to a placeholder in a layout. Layout 
details allow any number of presentation components to bind to each placeholder. If the layout details 
associate multiple presentation components with the same placeholder key, the layout engine binds those 
components to the placeholder in the order specified in layout details.  

The LayoutPageEvent setting in web.config controls which ASP.NET page event causes the layout 

engine to apply layout details. Developers can choose to bind sublayouts and renderings to placeholders 

during the PreInit event, the Init event, or the Load event. 

Consistency leads to usability, and usability leads to return visitors. Developers achieve consistency 
through content and code reuse. Placeholders maximize consistency while minimizing development and 
maintenance through reuse of presentation components across various types of content and even 
different logical sites. 

2.5.2 Placeholder Keys 

Each placeholder has a textual key. Layout details reference a placeholder key for each presentation 
component. These references instruct the layout engine which presentation components to bind 
dynamically to the placeholder when generating page views, and in what order to bind those components 
to that placeholder. 

Placeholder keys must be unique within all of the presentation components referenced in the layout 
details for any device for an individual item. It is invalid for both a layout and a sublayout used for a single 
device in the presentation details for a single item to contain multiple placeholders with a common key, 
such as a nested sublayout containing a placeholder with the same key as a placeholder in the layout. 
Placeholders in common regions defined in multiple components never used together on a single page 
commonly share a single placeholder key. For example, two sublayouts never used together in a single 
page view might each contain a placeholder with a common key. 

Layout details can reference placeholders by key or by fully qualified key. A fully qualified placeholder key 
indicates the location of the placeholder in the component nesting hierarchy. For example, if a sublayout 

                                                      
2
 Do not confuse Sitecore placeholders with content placeholders used in ASP.NET master pages. All 

uses of the term placeholder in Sitecore documentation refer to Sitecore placeholders unless otherwise 
specified. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 14 of 34 

 

containing a placeholder with key B binds to a placeholder with key A in a layout, the fully qualified key of 

the nested placeholder is /A/B. The Design pane of Page Editor always uses fully qualified placeholder 

keys, but users may enter unqualified placeholder keys in layout details. 

2.5.3 Placeholder Settings 

Placeholder settings control the sublayouts and renderings users can bind to a placeholder. For more 
information about placeholder settings, see the Client Configuration Reference manual. 

2.5.4 Placeholder Usage 

Developers use placeholders to represent regions of reusable layouts and sublayouts in which different 
components execute for different content items. Developers use layout details to cause the layout engine 
to bind different presentation components to the placeholders for different types of items.  

Each rendering component can generate output dynamically. Placeholders add the ability to execute 
different rendering components for different items that share a common layout.  

Tip 
To minimize administration of layout details, use placeholders only when necessary. Statically bind 
presentation components whenever possible. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 15 of 34 

 

2.6 XML Layouts, XML Controls, XML Dialogs, and XML Forms 

Sitecore implements CMS user interfaces with XML layouts, XML controls, XML dialogs, and XML forms. 
This document does not describe these technologies because developers do not generally use them to 
develop published Web sites, only CMS user interface components. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 16 of 34 

 

Chapter 3  

Request Processing 

This chapter describes layers of functionality provided by the layout engine beyond those 
provided by the ASP.NET Web application server. 

This chapter contains the following sections: 

 The Sitecore Layout Engine 

 Devices 

 Layout Details 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 17 of 34 

 

3.1 The Sitecore Layout Engine 

The Sitecore layout engine enhances the ASP.NET page lifecycle in three primary ways: 

 A .NET HTTP module maps URLs to content items in the database instead of files on disk. 

 The HTTP module defines a context object indicating the user, language, requested content item, 
and other contextual information. 

 The HTTP module applies the layout details specified in the requested content item to generate 
output. 

Web applications respond to HTTP requests from Web browsers, PDAs, RSS readers and other devices. 
The Sitecore layout engine uses properties of each HTTP request, such as the domain, the path, query 
string parameters, and HTTP headers such as browser user agent and cookies, to determine how to 
assemble the response. The layout engine applies the presentation components referenced in the layout 
details of the requested content item. These ASP.NET and XSL presentation components assemble the 
response by accessing the CMS database and any other resources available to ASP.NET and XSL. 

3.1.1 The Context Item 

The layout engine identifies a content item in the database based on the path in the requested URL. The 
requested item becomes the context item for the lifecycle of the request. The context item is the default 
item in the Sitecore database for most operations associated with the page request, such as determining 
layout details to apply. The context item is the default data source for sublayouts and renderings for which 
the developer does not specify a data source. 

For example, under the default configuration, if the browser requests /hr/jobs.aspx, the layout engine 

sets the context item to the content item /Sitecore/Content/Home/hr/jobs. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 18 of 34 

 

3.2 Devices 

Devices represent the different types of clients connected to the Internet that place HTTP requests 
against the Web server. Using devices and layout details, the layout engine applies different presentation 
components to a content item based on properties of the request. Developers use devices to process 
requests for content items using different presentation components for different browsers, printers, PDAs, 
RSS readers, and other types of devices with various form factors and other markup requirements. 

3.2.1 Device Implementation  

The layout engine determines a device for each HTTP request, known as the context device. If the 
properties of a request do not identify a specific device, the context device is the Default device, which 
typically represents a Web browser. 

The layout engine determines the requesting device based on: 

 Query string parameters. 

 Specific user agents. 

 The requested hostname. 

 .NET logic. 

Fallback Device 

Developers may associate each device with a fallback device. The layout engine applies the layout 
details for the fallback device if the context item does not contain layout details for the context device 
determined from request properties. 

Note 
If defined, layout details for the fallback device in the context item override layout details for the context 
device in the standard values item associated with the context item’s data template. If the context item 
does not contain layout details for the context device, but does contain layout details for its fallback 
device, the layout engine applies those layout details without checking for layout details for the context 
device in the standard values item for the context item’s template. 

3.2.2 Device Usage 

Sitecore provides two devices by default: 

 The Default device, which typically represents a Web browser. 

 The Print device, which represents a page prepared to be sent to a printer. 

By default, the layout engine activates the Print device if the query string includes the parameter p with a 

value of 1 (p=1). If the layout engine does not activate the Print device, it activates the Default device. 

Developers may create any number of additional devices to represent additional types of clients, or other 
criteria requiring the layout engine to format content differently. Additional devices may include but are not 
limited to the following: 

 RSS readers. 

 Mobile devices. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 19 of 34 

 

 Flash, such as to consume XML from the CMS. 

 Multiple logical Web sites. 

Note 
Developers must define request properties or logic to trigger any custom devices. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 20 of 34 

 

3.3 Layout Details 

Layout details contain references to reusable presentation components for the layout engine to invoke 
when servicing requests for content items from different types of devices. Developers use layout details: 

 To control the layout, sublayouts, and renderings the layout engine invokes to service HTTP 
requests for individual content items or types of content items. 

 To declaratively reuse presentation components for multiple content items. 

 To define multiple variant presentations of a content item for different devices. 

3.3.1 Layout Details Implementation 

ASP.NET Web applications map URLs in HTTP requests to files on disk. For example, a request for 

/hr/jobs.aspx invokes processing of the file jobs.aspx in the /hr directory under the Web site’s 

document root. 

The Sitecore layout engine maps URLs to content items in a database. Layout details in each content 
item reference layout, sublayout and rendering definition items to process when different devices request 
the item.  

The standard template inherited by all content item data templates defines a field to contain layout details. 
These layout details for each device in each content item indicate which layout to apply, and which 
sublayouts and renderings to populate each placeholder in the layout and any nested sublayouts.  

Different items dynamically populate the same placeholders in common layouts and sublayouts with 
different components at runtime. Each component generates output dynamically based on data in a 
Sitecore database, using Sitecore APIs and any other resources or APIs available to ASP.NET or XSL. 

Layout details separate data from presentation, providing content and presentation component reuse, 
flexibility in administration, simplified global user interface changes such as rebranding, support for 
distinct presentation for sub-sites, and other user interface administration requirements. 

Tip 
To minimize administration, rather than defining layout details in each content item, define layout details 
in the standard values item associated with each data template used to create content items. 

3.3.2 Layout Details vs. ASP.NET Master Pages 

ASP.NET supports content pages (.aspx files) that reference master pages (.master files) controlling 

presentation of the content.
3
 ASP.NET master pages contain controls applied to multiple content pages. 

Sitecore enhances the ASP.NET page generation process by providing abstract content storage and 
declarative layout details stored in a database instead of the file system. While layout files may be 
ASP.NET content pages that reference master pages, Sitecore developers generally avoid master pages 
and content pages due to the greater flexibility and reusability provided by declarative layout details. 

Sitecore content items are logically similar to ASP.NET content pages in that they contain content and 
reference presentation components, but with much greater flexibility than that provided by the ASP.NET 
master page infrastructure. Instead of referencing a single master page, a content item may reference 

                                                      
3
 For more information about ASP.NET maser pages and content pages, see 

http://msdn2.microsoft.com/en-us/library/wtxbf3hh.aspx. 

http://msdn2.microsoft.com/en-us/library/wtxbf3hh.aspx


Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 21 of 34 

 

different layouts, sublayouts, and renderings to invoke when the different types of devices request the 
item. 

Sitecore layouts are similar to ASP.NET master pages in that they contain controls applied to a number of 
content items. Unlike master pages that allow only one layer of nesting, layout details support declarative 
nesting of presentation components to any level. 

With just ASP.NET master pages, formatting content differently for different devices would require custom 
logic or multiple content pages, often resulting in content and markup duplication. Users may translate 
Sitecore content items into any number of languages, all using the same presentation components. With 
just master pages, translation would require custom logic or multiple content pages.  



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 22 of 34 

 

Chapter 4  

Developer Center and Microsoft Visual Studio 

This chapter describes the advantages and disadvantages of using Sitecore’s browser-
based Developer Center application to maintain presentation components in contrast to 
using Microsoft Visual Studio. This chapter also describes some specific release 
management considerations for Sitecore presentation components. 

This chapter contains the following sections: 

 Developer Center vs. Visual Studio 

 Presentation Component Definition Items 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 23 of 34 

 

4.1 Developer Center vs. Visual Studio 

Sitecore’s browser-based Developer Center allows developers to edit layouts, sublayouts, and XSL 
renderings. Developers may also edit presentation components in offline file editors such as Visual 
Studio. 

Developer Center has some advantages over Visual Studio: 

 Developer Center does not require client-side licensing or installation. 

 Developer Center is less intimidating and easier to learn than Visual Studio. 

 Developer Center is available through the Sitecore desktop. 

 Developer Center provides easy access to Sitecore’s browser-based debugger. 

Creating a layout, sublayout, or XSL rendering in Developer Center invokes a wizard that copies a 
Sitecore boilerplate for the file type to the new location and creates a corresponding definition item, 
involving less steps than creating the item in Visual Studio and then manually creating the corresponding 
definition item in Sitecore. 

Visual Studio has some advantages over Developer Center. Visual Studio provides: 

 A single development environment for all types of resources including C#, VB.NET, and other 
languages supported by .NET. 

 Intellisense, syntax completion, automatic code indentation, error underlining, and other 
integrated development environment features. 

 The Visual Studio debugger for .NET code. 

 Integration with source code management tools. 

Note 
The ASP.NET 2.0 Web Application project model available in Visual Studio 2005 Service Pack 1 and 
Visual Studio 2008 is convenient for most Sitecore solutions.

4
 

                                                      
4
 For instructions to create a Visual Studio Web Application project for use with a Sitecore solution, see 

http://sdn5.sitecore.net/Articles/API/Creating%20VS2005%20Project.aspx. 

http://sdn5.sitecore.net/Articles/API/Creating%20VS2005%20Project.aspx


Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 24 of 34 

 

4.2 Presentation Component Definition Items 

All presentation components involve files on disk, such as .ascx, .aspx, .xslt code, or .NET 

assemblies. Other presentation elements, such as CSS, JavaScript, media, and other files referenced by 
presentation components consist of files on disk, which may or may not have corresponding definition 
items. 

Layouts, sublayouts, XSL renderings, and other types of items consist of a definition item containing a 
field that contains the path to file on disk that implements presentation logic. Web control rendering 
definition items and method rendering definition items store the name of a class and the .NET assembly 
containing that class.  

Certain operations on definition items have predictable consequences that can be unexpected for 
developers unfamiliar with Sitecore. Moving, duplicating, renaming, or deleting a definition item does not 
update the field that contains the file location information. A duplicate of a definition item references the 
same file as the original definition item. 

Other than media stored as files instead of in the database, developers typically manage file assets using 
a source code management system with release management techniques rather than using CMS 
versioning and publishing. 

Important 
Be sure to deploy both the file and the definition item when moving presentation components from 
development through test to production. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 25 of 34 

 

Chapter 5  

Output Caching 

This chapter describes how the layout engine caches the output of different presentation 
components to maximize performance and throughput. 

This chapter contains the following sections: 

 Rendered Output Caching Options 

 Rendered Output Caching Implementation 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 26 of 34 

 

5.1 Rendered Output Caching Options 

Each presentation component may generate different output under different conditions. For example, a 
footer rendering might generate the same output for all pages, while a breadcrumb rendering may 
generate different output for different URLs, and a navigation rendering might generate different output for 
different users based on their access rights to content items. 

The layout engine can cache the output of each sublayout and rendering used by each page view. 
Developers use rendered output caching to improve performance by not executing sublayouts and 
renderings under different conditions, instead retrieving output generated previously by that component 
under the same conditions. 

While output caching does not eliminate the need for data structure and code optimization, avoiding code 
execution can increase performance significantly, especially in high-volume solutions.  

Page caching, such as by using the OutputCache directing in an ASP.NET Web form, can consume 
excess memory a component generates the same output for numerous page views. Page caching does 
not support dynamic features. Sitecore component output caching allows the output of each component 
to vary by a number of criteria as described in the following sections, caching only when appropriate. 

Important 
Caching is crucial to overall solution performance. The quickest and easiest way to increase the 
throughput, and hence capacity, of a Sitecore solution is to optimize output caching configuration. 

Important 
Do not cache the output of components that respond to ASP.NET page events without understanding the 
implications. 

Important 
Do not confuse Sitecore rendered output caching with ASP.NET page and fragment caching as 
implemented with the OutputCache directive in Web forms and Web user controls. Developers should not 
use ASP.NET page and fragment caching with Sitecore content, or must clear the ASP.NET cache when 
required, such as after Sitecore publishing operations. In Sitecore documentation, the term caching refers 
to Sitecore rendered output caching unless otherwise specified. 

Important 

Developers must override the GetCachingID() method in Web controls in order to support output 

caching. This method generally returns an identifier for the rendering, such as the namespace and class 
name of the Web control. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 27 of 34 

 

5.2 Rendered Output Caching Implementation 

By default, the layout engine executes each presentation component for each HTTP request. Developers 
must select caching criteria for each use of each presentation component that requires output caching.  

The layout engine manages a separate output cache for each logical site. Caching automatically varies 
by site.  

Each output cache logically consists of a list of any number of key-value pairs. Each cache key is a 
unique string identifying a presentation component and various caching criteria. The value in the cache 
corresponding to that cache key is the output of that component under those criteria. Multiple invocations 
of a single presentation component may generate multiple entries in the list referencing output generated 
under different conditions, each with a different cache key. 

The cache key automatically includes the context language and a presentation component identifier, such 
as the ID of the rendering definition item or the path to an XSL rendering file. Caching automatically 
varies by component and language. 

Note 
Caching may vary by multiple criteria. For example, a developer may choose to vary the output caching of 
a presentation component by both data source and other VaryBy properties. 

Setting the VaryBy properties described in the following sections to true, adds corresponding tokens to 
the cache key, causing caching to vary by those properties. When the layout engine evaluates a 
presentation component configured to cache output, it retrieves output from the cache if an entry with the 
corresponding key exists in the cache. 

If the developer has not configured the component to cache output, or the cache does not contain a 
corresponding entry, the layout engine invokes the component. If the developer has configured the 
component to cache, the layout engine adds an entry with the corresponding key to the cache. 

Caching the output of each sublayout and rendering by the fewest criteria possible minimizes memory 
usage and the number of times the system must execute each component. 

Note 
By default, publishing clears output caches. 

5.2.1 Which Cache Settings Apply? 

Sitecore allows developers to define output cache criteria in three places: 

 In the Caching section of the sublayout and rendering definition item. 

 In the properties of the control where a developer statically binds a presentation component to a 
layout or sublayout. 

 On the Caching tab when a developer binds the presentation component to a placeholder in 
layout details. 

The layout engine uses cache criteria defined in the Caching section of the definition item in only two 
cases: 

 When a developer drags a sublayout or rendering onto a layout or sublayout in Developer Center, 
the system copies caching properties from the definition item to the new static reference. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 28 of 34 

 

 The layout engine uses caching settings in the definition item if layout details do not specify 
caching criteria for components dynamically bound to placeholders. 

Cache settings must be explicitly defined wherever a developer statically binds a presentation component 
to a layout or sublayout. When a component is dynamically bound to a placeholder, cache settings 
explicitly defined on the caching tab override cache settings defined in the definition item. Cache settings 
defined in the definition item apply only when no caching settings exist on the Caching tab in layout 
details. 

Note 
Caching options defined in the Caching section of the sublayout or rendering definition item provide 
default caching criteria for users who define layout details. 

5.2.2 Output Caching Properties 

Cacheable presentation components support the following caching properties. All caching properties 
default to false. 

Cacheable 

The Cacheable property of each use of a presentation component controls whether or not the layout 
engine caches the output of that component. If the Cacheable property is false, the layout engine invokes 
the component each time it processes the component reference. The layout engine never caches or 
retrieves the output of the component from cache, regardless of any of the VaryBy properties defined in 
the following sections. 

If the Cacheable property is true and no VaryBy properties are true, the layout engine invokes the 
component on its first use for each logical site for each language, but retrieves that cached output for all 
subsequent uses of that component for that logical site and language. If the Cacheable property is true 
and one or more VaryBy properties are true, those VaryBy properties control whether or not the layout 
engine invokes the component or retrieves cached output generated previously under the same VaryBy 
conditions. 

Developers set the Cacheable attribute: 

 To False, for any sublayouts and renderings for which the layout engine should not cache output. 

 To True, for any sublayouts and renderings for which the layout engine should cache output. 

 To True, with no true VaryBy properties for components for which output does not vary by any 
criteria other than logical site and language. 

 To True, with one or more true VaryBy properties for components that generate different output 
under the specified conditions. 

Note 
If the Cacheable property of a presentation component is false, VaryBy properties have no effect. The 
layout engine never caches the output of components for which the Cacheable property is false or 
undefined. 

Important 
The developer must define caching properties for each use of each cacheable component. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 29 of 34 

 

VaryByData 

The VaryByData property controls whether or not output caching varies based on the data source of the 
presentation component. 

Developers set the VaryByData property: 

 To False, for components that do not generate different output when used with different data 
sources. 

 To True, for components that generate different output when used with different data sources. 

VaryByDevice 

The VaryByDevice property controls whether or not caching varies based on the name of the context 
device. 

Developers set the VaryByDevice property: 

 To False, for components that do not generate different output when used with different devices. 

 To True, for components that generate different output when used with different devices. 

VaryByLogin 

The VaryByLogin property controls whether or not output caching varies based on whether or not the user 
has authenticated. 

Developers set the VaryByLogin property: 

 To False, for components that do not generate different output for authenticated than for 
unauthenticated visitors. 

 To True, for components that generate different output for authenticated than for unauthenticated 
visitors. 

Note 
For caching configuration involving VaryByLogin, the layout engine treats all anonymous users as a 
single authenticated user. 

VaryByParm 

The VaryByParm property controls whether or not output caching varies based on rendering parameters 
passed to the presentation component. 

Developers set the VaryByParm property: 

 To False, for components that do not generate different output when passed different rendering 
parameters. 

 To True, for components that generate different output when passed different parameters. 

Note 
Solutions built with earlier versions of Sitecore may have used the token VaryByParam instead of 
VaryByParm. Update any uses of VaryByParam to VaryByParm. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 30 of 34 

 

VaryByQueryString 

The VaryByQueryString property controls whether or not output caching varies based on query string 
parameters passed in the URL. 

Developers set the VaryByQueryString property: 

 To True, for components that generate different output when supplied different query string 
parameters. 

 To False, for components that do not generate different output when supplied different query 
string parameters. 

Note 
Do not confuse VaryByParm with VaryByQueryString. VaryByParm causes output caching to vary based 
on rendering parameter values passed by the developer. VaryByQueryString causes output caching to 
vary based on parameters passed in the URL query string. 

VaryByUser 

The VaryByUser property controls whether or not output caching varies by the domain and username of 
the context user. 

Developers set the VaryByUser property: 

 To False, for components that do not generate different output for different users. 

 To True, for components that generate different output for different users, when the number of 
active users between publishing operations is relatively small. 

Note 
For caching configuration involving VaryByUser, the layout engine treats all anonymous users as a single 
authenticated user. 

Note 
To avoid excess memory consumption, avoid VaryByUser except in solutions with relatively small 
numbers of users or supported by sufficient hardware resources. 

Note 
Do not confuse VaryByUser with VaryByLogin. VaryByLogin causes the presentation component to 
generate different output depending on whether or not a user has authenticated, differentiating 
anonymous users from authenticated users. VaryByUser causes the presentation component to generate 
different output for each user. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 31 of 34 

 

Chapter 6  

Choosing Presentation Technology 

This chapter provides guidance for choosing a technology to implement each 
presentation component. 

This chapter contains the following sections: 

 General Presentation Technology Considerations 

 Specific Presentation Technology Considerations 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 32 of 34 

 

6.1 General Presentation Technology Considerations 

Developers choose a technology to implement each presentation component. In some cases, 
requirements of the component dictate or restrict the choice of presentation technologies. For example: 

 Layouts represent markup superstructures shared to numerous pages. 

 Placeholders represent regions of layouts and sublayouts to which the layout engine dynamically 
binds various sublayouts and renderings according to layout details. 

 Existing Web forms and Web user controls convert most easily to sublayouts. 

 Only layouts and sublayouts support placeholders. 

 Web control renderings can easily wrap or replace existing Web controls. 

 Method renderings can reference existing .NET methods. 

 Web part renderings can reference existing Web parts. 

 URL renderings embed content retrieved from another URL. 

 XML layouts, XML controls, XML dialogs, and XML forms are appropriate for CMS user 
interfaces. 

For other presentation components, developers choose between implementing a sublayout, an XSL 
rendering or a Web control rendering. In general, XSL renderings are appropriate for components 
containing mostly markup, while sublayouts and Web control renderings are appropriate for presentation 
components containing significant logic. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 33 of 34 

 

6.2 Specific Presentation Technology Considerations 

The following sections describe specific advantages and disadvantages of the various presentation 
component technologies used to render portions of a page. 

6.2.1 Sublayout Considerations 

Sublayouts provide all of the features of ASP.NET Web user controls. Sublayouts separate design (the 

.ascx file) from logic (the optional code-behind or code-beside file). Sublayouts have access to the 

Sitecore context, the Sitecore database and .NET APIs, as well as any resources and APIs available to 
ASP.NET. Sublayouts support nested ASP.NET controls including Sitecore placeholders. Developers can 
step through compiled sublayout code using the Visual Studio debugger. 

6.2.2 XSL Rendering Considerations 

With only a little knowledge of XSL and XPath syntax, XSL can be a powerful language for generating 
markup, similar to HTML but with logic to generate output dynamically. XSL is an open standard defined 
by the W3C. For developers fluent in the technology, XSL can be efficient and elegant for a variety of 
presentation tasks. 

XSL is perfectly suited for generating markup, especially by reformatting XML into HTML or XHTML. XSL 
is often appropriate for retrieving and formatting field values, such as in main content body renderings, as 
well as recursive functions, such as site maps and breadcrumbs. XSL can be especially useful in 
prototyping, and developers can convert XSL renderings to one of the .NET technologies if needed. 

XSL uses text files editable through the browser or any text editor, which do not require a compiler or 
restart ASP.NET when updated. 

Sitecore XSL extension controls and functions automatically support inline editing of field values in the 
CMS database. 

The preview frame beneath the editing pane in Developer Center allows the developer to select a data 
source item and view the output of XSL renderings in real time while editing the code. 

XSL and XPath syntax, as well as the lack of common programming features available to XSL code, 
result in XSL being ill suited for complex logic. The declarative programming model is unfamiliar to many 
developers. Complex XPath and other statements in XSL code can be difficult to maintain. XSL is 
generally not suited to working with multiple data sources, especially resources other than XML. 

While developers often edit XSL in integrated development environments such as Visual Studio, such 
offline XSL editors cannot access the XML representations of Sitecore databases or invoke .NET XSL 
extensions. Developers cannot debug XSL renderings using Visual Studio, though XSL renderings can 
write to the trace visible in Sitecore’s browser-based debugger. XSL renderings do not provide compile-
time error detection, only runtime exception management. 

XSL renderings execute source code, which must exist in all environments including production. 
Dynamically interpreted XSL may never perform as well as native .NET code. Cache the output of all 
renderings by the fewest criteria possible, especially expensive XSL renderings. 

Whether or not a project uses XSL, Sitecore developers must be familiar with ASP.NET. Because a 
developer could accomplish anything in .NET that they could accomplish in XSL, XSL is an optional 
technology requiring an additional developer skill set to implement and support. Avoid implementing the 
same logic in both .NET and XSL code. 



Sitecore CMS 6 Presentation Component Reference   

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of 
this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.  

Page 34 of 34 

 

XSL renderings can invoke .NET logic through extensions, allowing presentation control through flexible 
XSL markup with logic in compiled .NET code. While XSL transformation performance may never equal 
that of a native .NET component, the advantages of XSL for formatting may outweigh the performance 
differential, especially for components that support output caching. 

XSL renderings cannot contain nested placeholders or ASP.NET controls. 

6.2.3 Web Control Considerations 

Web control renderings support all of the features of ASP.NET Web controls. Web controls have access 
to the Sitecore context, the Sitecore database and .NET APIs, as well as any resources and APIs 
available to .NET. These features are a superset of those available to XSL renderings. Developers can 
step through compiled Web control code using the Visual Studio debugger. 

Web controls do not separate design from presentation using the ASP.NET code-behind and code-beside 
models used by sublayouts, and are therefore appropriate for components that generate markup 
completely dynamically. Web controls cannot contain placeholders. 

6.2.4 Method Rendering Considerations 

Method renderings are very simple and efficient, but do not support a data source, rendering parameters, 
or output caching. In general, wrap methods with Web control renderings rather than implementing 
method renderings in order to support caching. 


	Introduction
	Presentation Components
	Layout Engine Overview
	Layouts (ASP.NET .aspx Web Forms)
	Layout Implementation
	Layout Usage

	Sublayouts (ASP.NET .ascx Web User Controls)
	Sublayout Implementation
	Sublayout Usage

	Renderings
	Rendering Implementation
	Rendering Usage
	Rendering Types
	Sublayouts as Renderings
	XSL Renderings
	Web Control Renderings
	Method Renderings
	URL Renderings
	Web Part Renderings

	Rendering Data Source
	Rendering Parameters
	Field Renderer Web Control

	Placeholders
	Placeholder Implementation
	Placeholder Keys
	Placeholder Settings
	Placeholder Usage

	XML Layouts, XML Controls, XML Dialogs, and XML Forms

	Request Processing
	The Sitecore Layout Engine
	The Context Item

	Devices
	Device Implementation
	Fallback Device

	Device Usage

	Layout Details
	Layout Details Implementation
	Layout Details vs. ASP.NET Master Pages


	Developer Center and Microsoft Visual Studio
	Developer Center vs. Visual Studio
	Presentation Component Definition Items

	Output Caching
	Rendered Output Caching Options
	Rendered Output Caching Implementation
	Which Cache Settings Apply?
	Output Caching Properties
	Cacheable
	VaryByData
	VaryByDevice
	VaryByLogin
	VaryByParm
	VaryByQueryString
	VaryByUser



	Choosing Presentation Technology
	General Presentation Technology Considerations
	Specific Presentation Technology Considerations
	Sublayout Considerations
	XSL Rendering Considerations
	Web Control Considerations
	Method Rendering Considerations



