
Sitecore CMS 6.5 or later
The Sitecore Web Service Reference Guide Rev: June 3, 2014

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Sitecore CMS 6.5 or later

The Sitecore Web Service
Reference Guide
A Developer's Guide to the Sitecore Service Layer

Sitecore CMS 6.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 2 of 19

Contents

Sitecore Web Services and SOA .. 3

Discovering the Web Service .. 4

API Reference Guide .. 5

API Extension .. 9

Sitecore Rocks Web Service ... 9

Invoking the Web Service ... 10

Using the Service as a Reference ... 10

Setting Up the Items in the Sitecore Content Tree .. 10

Invoking the Web Service .. 10

Using the GetXML and InsertXML Methods .. 13

Creating a Proxy for the Web Service ... 14

Support for Industry Standards ... 16

Security ... 17

Transport-Level Security ... 17

Application-Level Security ... 17

Security Considerations for the Sitecore Web Service ... 17

The Sitecore Web Service Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 3 of 19

Sitecore Web Services and SOA

To realize the Service Oriented Architecture (SOA) paradigm, the Sitecore service layer is based on
web services.

The Sitecore web service contains 21 methods.

You can also build your own service layer, extend the readymade service functionality, provide more
security, and make it open to other technologies.

As is the case with any web service, the Sitecore web service is designed to:

 Expose and describe itself.

A web service defines its functionality and attributes so that other applications can understand
it. To make its functionality available to other applications, a web service contains a Web
Service Description Language (WSDL) file.

 Enable other parties to locate it on the web.

A web service can be registered in a Universal Description, Discovery, and Integration (UDDI)
directory so that applications can locate it.

 Be invoked.

Once a web service has been located and examined, a remote application can invoke the
service using a standard Internet protocol.

Offer appropriate internal business processes as value-added services that can be used by
other organizations.

Integrate its internal business processes and dynamically link them with those of its business
partners.

Sitecore CMS 6.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 4 of 19

Discovering the Web Service

To explore the standard Sitecore web service that is present in any Sitecore release, type

http://yourhost/sitecore/shell/webservice/service.asmx and you see a list of the

methods that the web service offers. The following image is an example of a Sitecore web service:

If you click on any of the methods, you can see that these operations are generic enough to provide a
flexible interface that is open to SOAP 1.1 and 1.2 messages. This interface flexibility eases the
service oriented integration.

Moreover, to access the WSDL file of the web service in your browser, click the Service Description

link or type http://yourhost/sitecore/shell/webservice/service.asmx?WSDL

In the WSDL file, you can see:

 The service port that defines the address or connection point to the web service. The service
port is represented by a simple HTTP URL string.

 The service target namespace.

 The operations that define the way the message is encoded, for example, literal.

http://yourhost/sitecore/shell/webservice/service.asmx?WSDL

The Sitecore Web Service Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 5 of 19

API Reference Guide

The Sitecore web service API is in the Sitecore.Visual.Service class in the

Sitecore.Client.dll.

The following class diagram describes the list of methods that are included in the Sitecore web
service:

The following table describes each method in the Sitecore web service and its parameters:

Method Description

XElement AddFromMaster(

 string id,

 string masterID,

 string name,

 string databaseName,

 Credentials credentials)

Takes the GUID of the parent item under which
the new item should be created, the master ID
that specifies the ID of the branch item, the

name parameter that specifies the name of the

new item, the database name and creates a
new item based on a branch.

XElement AddFromTemplate(

 string id,

 string templateID,

 string name,

 string databaseName,

 Credentials credentials)

Takes the GUID of the parent item under which
to create the new item, the template ID
specifies the template, the name of the new
item, and creates a new item based on that
template.

Sitecore CMS 6.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 6 of 19

Method Description

XElement AddVersion(

 string id,

 string language,

 string databaseName,

 Credentials credentials)

Takes the item’s GUID, the acronym of the
language, the database name, the user’s
credentials, creates a new version of the item
in this language, and includes the number of
the new version in the SOAP response.

XElement CopyTo(

 string id,

 string newParent,

 string name,

 string databaseName,

 Credentials credentials)

Takes the item’s GUID, the new parent item’s
GUID, the name of the item’s copy, the user’s
credentials, and creates a copy of the item
under the parent item in the content tree.

XElement Delete(

 string id,

 bool recycle,

 string databaseName,

 Credentials credentials)

Takes the item’s GUID, a boolean value for

recycle, the database name, the user’s

credentials, and deletes the item.

If recycle is set to false, the item and its

descendants are deleted permanently.

If recycle is set to true, the item and its

descendants are moved to the Recycle Bin in
Sitecore.

XElement DeleteChildren(

 string id,

 string databaseName,

 Credentials credentials)

Takes the parent item’s GUID, the database,
the user’s credentials, and deletes the children
of this item.

XElement Duplicate(

 string id,

 string name,

 string databaseName,

 Credentials credentials)

Takes the item’s GUID and name, the
database name, the user’s credentials, and
duplicates this item in the same location as the
original item.

XElement GetChildren(

 string id,

 string databaseName,

 Credentials credentials)

Takes the GUID of an item, the database
name, the user’s credentials, and returns a list
of the names of the item children and their
GUIDs.

XElement GetDatabases(

 Credentials credentials)

Takes the user credentials and returns a list of
the database names that the Sitecore instance
uses.

XElement GetItemFields(

 string id,

 string language,

 string version,

 bool allFields,

 string databaseName,

 Credentials credentials)

Takes the item’s GUID, the acronym of the
language that is set for the whole site, the
version number, the boolean value for whether
or not to return all fields, the database name,
the user’s credentials, and returns a list of the
fields that this item contains.

Note

If allfields is set to false, the web service

returns all the fields except for system fields.
System fields belong to the Standard Template
or one of the Standard Templates base
templates such as Appearance, Layout, and
Workflow.

The Sitecore Web Service Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 7 of 19

Method Description

XElement GetItemMasters(

 string id,

 string databaseName,

 Credentials credentials)

Takes the item’s GUID, the database name,
the user credentials, and returns a list of the
template names and GUIDs that are
configured in the insert options.

XElement GetLanguages(

 string databaseName,

 Credentials credentials)

Takes the name of the database, the user
credentials, and returns a list of the languages
that are set for the entire site.

Note
If there is a language that is set for one or only
some of the items, it is not included in the
response.

XElement GetMasters(

 string databaseName,

 Credentials credentials)

Takes the database name, the user’s
credentials, and returns the masters.

Note
The Master logic has been replaced by the
Branch Templates logic.
You can use Branch templates to insert items
using structures that are predefined by
Sitecore administrators. A branch template
consists of a branch template definition item,
including all of its descendants.
When a user chooses a branch template from
the insert options, Sitecore copies the entire
collection of descendants defined under the
branch template definition item, and places
that collection as a group of subitems under
the currently selected item.

XElement GetTemplates(

 string databaseName,

 Credentials credentials)

Takes the database name, the user’s
credentials, and returns a list of the templates
in the site.

XElement GetXML(

 string id,

 bool deep,

 string databaseName,

 Credentials credentials)

Takes the item’s GUID, the database name,

the user’s credentials, and if deep = true

the item’s descendants. It then returns the
XML representation of an item.

Note
For example, you can use the XML to back up
or persist items. You can also use the

InsertXML method to insert the items into the

same or a different database.

Sitecore CMS 6.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 8 of 19

Method Description

XElement InsertXML(

 string id,

 string xml,

 bool changeIDs,

 string databaseName,

 Credentials credentials)

Takes the item’s GUID, XML representation,

the database name, the changeIDs

parameter, and inserts an item, with or without
descendants, into a database based on the
representation.

Note
If you insert one or more items into the same
database as they were copied from, the item
version of the source item is overwritten if the

changeIDs parameter is set to false. If the

changeIDs parameter is set to true, the

copied items are inserted as duplicates.

XElement MoveTo(

 string id,

 string newParent,

 string databaseName,

 Credentials credentials)

Takes the item’s GUID, the new parent item’s
GUID and moves the item so that it becomes a
child of the new parent in the content tree.

XElement RemoveVersion(

 string id,

 string language,

 string version,

 string databaseName,

 Credentials credentials)

Takes the item’s GUID, the acronym of the
language, the number of the version to delete,
the database name, the user’s credentials, and
deletes the specified version of the item.

XElement Rename(

 string id,

 string newName,

 string databaseName,

 Credentials credentials)

Takes the item’s GUID, the new name to give
to the item, the database name, the user’s
credentials, and renames the item.

XElement Save(

 string xml,

 string databaseName,

 Credentials credentials)

Takes the item’s XML representation, the
database name, and updates the item based
on the representation

Note
You can obtain the XML representation using

the GetItemFields method.

XElement VerifyCredentials(

 Credentials credentials)

Takes the user’s credentials and returns

<status>OK</status> and

<data>OK</data> if the user is authorized

and returns <status>failed</status>

and <error>Unknown username or

password.</error> if the user is not

authorized.

Note

The fully qualified name of the return type of the methods is System.Xml.Linq.XElement and the

fully qualified name of the type of the credentials parameters is

SitecoreWebService.Credentials.

The Sitecore Web Service Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 9 of 19

API Extension

There are other operations you might need to accommodate in your service layer. These operations
could be:

 Installing an update package.

 Installing a regular Sitecore Zip package.

 Getting the URL of an item by ID.

 Publishing items from source to target database.

 Transferring items from source to target.

To implement these operations, you can:

 Create a new web service that contains the new methods.

Or

 Override the existing web service in the same way as the Sitecore Rocks web service.

Note
Because the web service class is not sealed and the methods are not virtual, we recommend that you
create a new web service.

Sitecore Rocks Web Service

The Sitecore Rocks web service adds two more methods to the ordinary Sitecore web service:

Method Description

XElement Execute(

 string typeName,

 SitecoreWebService.

 ArrayOfAnyType parameters,

 Credentials credentials)

Adds remote procedure call (RPC) functionality to the
web service.
The RPC classes must be located in the

Sitecore.Rocks.Server.Requests namespace

and have a public method called Execute that returns

a string.

public string Execute()

The method can take any number of string parameters.

These parameters are passed to the Execute method.

The typeName parameter denotes the class to invoke,

for example

Sitecore.Rocks.Server.Request.GetChildren.

XElement Login(

 Credentials credentials)

Logs the user into the system using his credentials.

Note
If you have Sitecore Rocks plugged into Visual Studio, you automatically get the Sitecore Rocks web

service when you connect to your website. It is called service2.asmx and placed in the same folder

as the ordinary Sitecore web service.

Sitecore CMS 6.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 10 of 19

Invoking the Web Service

Developers can invoke the web service by:

 Using the service as a reference.

 Creating a proxy for the web service.

Using the Service as a Reference

To invoke the web service by adding it as a reference, you must:

 Set up the items in the Sitecore content tree.

 Invoke the web service.

Setting Up the Items in the Sitecore Content Tree

Before you can invoke the web service, the items must be available in the content tree.

To make the items available in the content tree:

1. Log in to the Sitecore Desktop and click the Sitecore button, and then click Content Editor.

2. In the Content Tree, navigate to the /templates/User Defined/ item and create a

template called Terminal Integration Point.

This template is used for integrating and importing items.

3. In the content tree, select the Home item

4. Click the Home tab, and then in the Insert group, select /templates/User

Defined/Terminal Integration Point and name the new item Terminal Integration

Point and Click OK

5. Navigate to /sitecore/content/Home/Terminal Integration Point and write

down the item’s GUID of Terminal Integration Point which is then used as the parent item
under which to create the new items.

6. Navigate to /sitecore/templates/Sample/Sample Item and write down the item’s

GUID of Sample Item which is then used as the template to create the new items.

Invoking the Web Service

1. Create a Sitecore Visual Studio .NET console application project called Terminal.Integration

2. Set the Terminal.Integration project as the start-up project.

3. Add a service reference to the Terminal.Integration project.

4. In the Add Service Reference dialog.

5. Enter the URL of the Sitecore web service
http://yourhost/sitecore/shell/webservice/service.asmx

http://yourhost/sitecore/shell/webservice/service.asmx

The Sitecore Web Service Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 11 of 19

6. Change the Namespace to WsSitecore and click OK.

You have now added a reference to the Sitecore web service.

7. Open the Program.cs file and then in the main method:

 Create a string with a reference to the item’ GUID of the Terminal Integration Point
instance.

 Create a string with a reference to the template’s GUID of the Simple Item template.

 Create a string with a reference to the master database.

 Instantiate a new proxy for the Visual Sitecore Service interface.

 Create the web service credentials which must be used to invoke the web service.

 Allow the console to read a name as input from the keyboard.

 Use the name to create a new item in Sitecore using the AddFromTemplate method.

 List all the items located under the Terminal Integration Point using the GetChildren

method.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Xml.Linq;

using System.Xml;

using System.IO;

namespace Terminal.Integration

{

 class Program

 {

 static void Main(string[] args)

 {

 var visualSitecoreService =

 new WsSitecore.VisualSitecoreServiceSoapClient();

 string parentId = "{37F01BDF-AAF4-4C0C-87A0-CD26220F783D}";

 string templateId = "{1D7ADB59-3AB0-4131-93AB-AADE26297D65}";

 string database = "master";

 WsSitecore.Credentials credentials = new WsSitecore.Credentials();

 credentials.UserName = @"sitecore\admin";

 credentials.Password = "b";

 while (true)

 {

 Console.WriteLine("Sitecore Terminal Web Service Integration");

 Console.WriteLine("===");

 var children = visualSitecoreService.GetChildren(parentId, database,

 credentials);

 using (XmlReader reader =

 XmlReader.Create((new StringReader(children.ToString()))))

 {

 XDocument loaded = XDocument.Load(reader);

 var q = from c in loaded.Descendants("item")

 select (string)c.Value;

 Console.WriteLine("Number of added items in Sitecore = " +

 q.Count().ToString() + "" + Environment.NewLine);

 foreach (string name in q)

 Console.WriteLine("Item name = {0}", name);

Sitecore CMS 6.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 12 of 19

 Console.WriteLine(Environment.NewLine);

 }

 Console.WriteLine("===" +

 Environment.NewLine);

 Console.WriteLine("Enter a name for the new Item:" +

 Environment.NewLine);

 string itemName = Console.ReadLine();

 var result = visualSitecoreService.AddFromTemplate(parentId,

 templateId, itemName, database, credentials);

 Console.WriteLine("Item '" + itemName + "' is added.");

 Console.WriteLine("Press key to continue");

 Console.ReadKey();

 Console.Clear();

 }

 }

 }

}

Note

You must replace the values of the parentId and templateId with the ones that you wrote

down in the Setting UP Items in the Sitecore Content Tree section.

8. Compile the project and run the application.

The GetChildren method shows that no items were created.

9. Create two new items: Item1 and Item2.

Add Item1.

The Sitecore Web Service Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 13 of 19

Add item2.

The GetChildren method shows that Item1 and Item2 were created.

10. You can also verify that the items were created in Sitecore by navigating to the

sitecore/content/Home/Terminal Integration Point item.

Using the GetXML and InsertXML Methods

This section provides an example of how to use the GetXML and InsertXML methods in the Sitecore

Web Service. The code in this example inserts an item with the ID = exportRootItemId under the

item with the ID = importParentItemId.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Xml.Linq;

using System.Xml;

using System.IO;

namespace Terminal.Integration

{

 class Program

 {

 static void Main(string[] args)

 {

 var visualSitecoreService = new

WsSitecore.VisualSitecoreServiceSoapClient();

 string exportRootItemId = "{5C913B55-7AF8-4E1D-9E39-0430D7A19AD5}"; //

Needs modification depending on your environment – Root Item ID of export item (ex.

/sitecore/content/Home)

 string importParentItemId = "{B6B41E7D-5B61-44C4-88F4-CC7B4AEEE0DF}"; //

Needs modification depending on your environment – Parent Item ID of import item (ex.

/sitecore/content/Import Folder)

 string strXMLPath = @" C:\Out.xml"; // Needs modification depending on

your environment – File path for Export/Import

 string database = "master";

 WsSitecore.Credentials credentials = new WsSitecore.Credentials();

 credentials.UserName = @"sitecore\admin";

 credentials.Password = "b";

 while (true)

 {

 Console.WriteLine("Sitecore Terminal Web Service Integration");

Sitecore CMS 6.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 14 of 19

 Console.WriteLine("===" +

Environment.NewLine);

 Console.WriteLine("Press any key to GetXML() to Out.xml" +

Environment.NewLine);

 Console.ReadKey();

 var resultXML = visualSitecoreService.GetXML(exportRootItemId, true,

database, credentials);

 using (StreamWriter w = new StreamWriter(strXMLPath))

 {

 w.Write(resultXML);

 }

 Console.WriteLine("Press any key to InsertXML() from Out.xml" +

Environment.NewLine);

 Console.ReadKey();

 string readXML = String.Empty;

 using (StreamReader r = new StreamReader(strXMLPath))

 {

 readXML = r.ReadToEnd();

 }

 XmlDocument doc = new XmlDocument();

 doc.LoadXml(readXML);

 var itemNode = doc.SelectSingleNode("sitecore/data/data/item");

 var resultInsert = visualSitecoreService.InsertXML(importParentItemId,

itemNode.OuterXml, true, database, credentials);

 Console.WriteLine(resultInsert);

 Console.WriteLine(Environment.NewLine);

 Console.WriteLine("Finished. Please close command window");

 Console.ReadKey();

 Console.Clear();

 }

 }

 }

}

Note

You must replace the values of the exportRootItemId, importParentItemId, strXmlPath

variables and credentials on the appropriate values depending on your content tree structure to make
it work.

Creating a Proxy for the Web Service

In this section, the developer can pass the service URL and the name of the invoked method to create
a proxy for the web service, without having to add the service as a reference and build the application.

To create a proxy for the Sitecore web service:

1. Create a new console application and add the following code snippet to use the

GetDatabases method:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Xml;

using Microsoft.Web.Services3;

using Microsoft.Web.Services3.Addressing;

using Microsoft.Web.Services3.Messaging;

using System.Net;

using System.IO;

using System.Web;

namespace SitecoreWebService

The Sitecore Web Service Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 15 of 19

{

 class SitecoreWebService

 {

 public static void Main() { CallWebService(); }

 public static void CallWebService()

 {

 var _url = "http://yourhost/sitecore/shell/webservice/service.asmx";

 var _action = "http://sitecore.net/visual/GetDatabases";

 XmlDocument soapEnvelopeXml = CreateSoapEnvelope();

 HttpWebRequest webRequest = CreateWebRequest(_url, _action);

 InsertSoapEnvelopeIntoWebRequest(soapEnvelopeXml, webRequest);

 // begin async call to web request.

 IAsyncResult asyncResult = webRequest.BeginGetResponse(null, null);

 // suspend this thread until call is complete.

 asyncResult.AsyncWaitHandle.WaitOne();

 // get the response from the completed web request.

 string soapResult;

 using (WebResponse webResponse = webRequest.EndGetResponse(asyncResult))

 using (StreamReader rd = new

 StreamReader(webResponse.GetResponseStream()))

 {

 soapResult = rd.ReadToEnd();

 }

 Console.Write(soapResult);

 Console.ReadKey();

 }

 private static HttpWebRequest CreateWebRequest(string url, string action)

 {

 HttpWebRequest webRequest = (HttpWebRequest)WebRequest.Create(url);

 webRequest.Headers.Add("SOAPAction", action);

 webRequest.ContentType = " text/xml;charset=\"utf-8\"";

 webRequest.Accept = " text/xml";

 webRequest.Method = "POST";

 return webRequest;

 }

 private static XmlDocument CreateSoapEnvelope()

 {

 XmlDocument soapEnvelop = new XmlDocument();

 //building the SOAP envelope

 soapEnvelop.LoadXml(@"<soap:Envelope

 xmlns:xsi=""http://www.w3.org/2001/XMLSchema-instance""

 xmlns:xsd=""http://www.w3.org/2001/XMLSchema""

 xmlns:soap=""http://schemas.xmlsoap.org/soap/envelope/""><soap:Body>

 <GetDatabases xmlns=""http://sitecore.net/visual/""><credentials>

 <Password>b</Password> <UserName>sitecore\admin</UserName></credentials>

 </GetDatabases></soap:Body></soap:Envelope>");

 return soapEnvelop;

 }

 private static void InsertSoapEnvelopeIntoWebRequest(XmlDocument

 soapEnvelopeXml, HttpWebRequest webRequest)

 {

 using (Stream stream = webRequest.GetRequestStream())

 {

 soapEnvelopeXml.Save(stream);

 }

 }

 }

}

2. The following image shows the SOAP response of the GetDatabases method with the

databases that exist in Sitecore:

Sitecore CMS 6.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 16 of 19

Support for Industry Standards

The following table describes the industry standards that the Sitecore web service supports:

Standard Description

SOAP 1.1 and 1.2 Simple Object Access Protocol (SOAP) is an XML messaging standard
used to format web service requests and responses.

Note
Security information is generally included in the SOAP message header
and the message payload (for example, a purchase order) is part of the
SOAP message body.

For more information on SOAP, see http://www.w3.org/TR/SOAP

WSDL 1.1 WSDL is an XML format for describing network services containing RPC-
oriented and message-oriented information. Developers and automated
development tools can create WSDL files to describe a service and can
make this description available over the Internet. Client-side developers
and development tools can use published WSDL descriptions to obtain
information about available web services and to build and create client
proxies or program templates that access available services. For more
information on WSDL, see http://www.w3.org/TR/wsdl

WS-I Basic Profile 1.1 Web Service-Interoperability (WS-I) is an organization that promotes
web services interoperability across platforms, applications, and
programming languages. The current release conforms to the WS-I
Basic Profile 1.1. The ASMX 2.0 services category by definition provides
support for the WS-I Basic Profile 1.1 and SOAP 1.2. This means
support for XML 1.0, XML Schema Definition (XSD), WSDL, SOAP 1.1
and SOAP 1.2, and basic profile conformance validation at compile time.

Note
The Web Service Enhancements (WSE 3.0) and Windows
Communication Foundation (WCF) categories pick up where ASMX 2.0
leaves off by providing support for some of the more advanced WS-*
protocols.

Note
If you are creating your own service layer, we recommend that you make your services more generic
by supporting SOAP (1.1 and 1.2) and REST which stands for Representative State Transfer.

The Sitecore Web Service Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 17 of 19

Security

The Sitecore web service applies authentication and authorization by getting the user’s credentials as
a parameter and responding to the service consumer accordingly.

If you are creating your own service layer, we recommend that you make your services more secure
to support the following important concepts:

 Transport-Level Security

 Application-Level Security

Transport-Level Security

The most commonly used transport-level data-communication protocol is Secure Socket Layer (SSL),
otherwise known as Transport Layer Security (TLS) and provides:

 Authentication — communication is established between two trusted parties. This is already
applied in the Sitecore web service.

 Confidentiality — the data exchanged is encrypted.

 Message integrity — the data is checked for possible corruption.

 Secure key exchange between client and server.

Application-Level Security

Application-level security complements transport-level security. Application-level security is based on
XML frameworks that define confidentiality, integrity, authenticity; message structure; trust
management; and identity propagation.

Security Considerations for the Sitecore Web Service

The following list describes the threats in the Sitecore web service and how to overcome them:

Unauthorized Access

The user name and password of the consumer is passed in plaintext in the SOAP envelope.

You can use the following countermeasures to prevent unauthorized access:

 Use password digests in SOAP headers for authentication.

 Use Kerberos tickets in SOAP headers for authentication.

 Use X.509 certificates in SOAP headers for authentication.

 Use role-based authorization to restrict access to web services. This can be done by using
URL authorization to control access to the web service file (.asmx) or at the web method level
by using principal-permission demands.

Sitecore CMS 6.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 18 of 19

Parameter Manipulation

Parameter manipulation refers to the unauthorized modification of data that is sent between the web
service consumer and the web service. For example, an attacker can intercept a web service
message, as it passes through an intermediate node en route to its destination; and can then modify it
before sending it on to its intended endpoint.

You can use the following countermeasures to prevent parameter manipulation:

 Digitally sign the message. The digital signature is used by the recipient to verify that the
message has not been tampered with while it was in transit.

 Encrypt the message payload to provide privacy.

Network Eavesdropping

With network eavesdropping, an attacker is able to view web service messages as they flow across
the network. For example, an attacker can use network monitoring software to retrieve sensitive data
contained in a SOAP message. This might include sensitive application level data or credential
information.

You can use the following countermeasures to protect sensitive SOAP messages as they flow across
the network:

 Use transport level encryption such as SSL or IPSec. This is only applicable if you control
both endpoints.

 Encrypt the message payload to provide privacy. This approach works in scenarios where
your message travels through intermediary nodes route to the final destination.

Disclosure of Configuration Data

There are two main ways in which a web service can disclose configuration data.

First, the web service can support the dynamic generation of the WSDL file or it can provide the
WSDL information in downloadable files that are available on the web server. This may not be
desirable depending on your scenario.

Note
WSDL describes the characteristics of a web service, for example, its method signatures and
supported protocols.

Second, with inadequate exception handling, the web service may disclose sensitive internal
implementation details that might be useful to an attacker.

You can use the following countermeasures to prevent the unwanted disclosure of configuration data:

 Authorize access to the WSDL files using the NTFS permissions.

 Remove the WSDL files from the web server.

 Disable the documentation protocols to prevent the dynamic generation of the WSDL file.

 Capture exceptions and throw a SoapException or SoapHeaderException — that

returns only minimal and harmless information — back to the client.

Message Replay

Web service messages can potentially travel through multiple intermediate servers. With a message
replay attack, an attacker captures and copies a message and replays it to the web service
impersonating the client. The message may or may not be modified.

The most common types of message replay attacks include:

 Basic replay attack

The Sitecore Web Service Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 19 of 19

The attacker captures a message, copies it, and then replays the same message and
impersonates the client. This replay attack does not require the malicious user to know the
contents of the message.

 Man in the middle attack

The attacker captures the message and then changes some of its contents, for example, a
shipping address, and then replays it to the web service.

You can use the following countermeasures to address the threat of message replay:

 Use an encrypted communication channel, for example, SSL.

 Encrypt the message payload. Although this does not prevent basic replay attacks, it does
prevent man in the middle attacks where the message contents are modified before being
replayed.

 Use a unique message ID or nonce with each request to detect duplicates, and digitally sign
the message for tamperproofing.

Note
A nonce is a cryptographically unique value used for the request.

When the server responds to the client it sends a unique ID and signs the message, including the ID.
When the client makes another request, the client includes the ID with the message. The server
ensures that the ID sent to the client in the previous message is included in the new request from the
client. If it is different, the server rejects the request and assumes it is subject to a replay attack.

The attacker cannot spoof the message ID, because the message is signed. this only protects the
server from client-initiated replay attacks that use the message request, and offers the client no
protection against replayed responses.

Anonymous Access

You can use the IIS server to block anonymous access to the /sitecore/shell/WebService

folder. For more information about limiting anonymous access to folders in IIS, see the Sitecore
Security Hardening Guide.

Brute Force Attack

Brute Force attacks rely on computational power to crack hashed passwords or other secrets secured
with hashing and encryption.

To mitigate this risk:

 Use strong passwords.

 Set a limit to the amount of times a user can enter his password incorrectly.

For more information on security threats and countermeasures, see http://msdn.microsoft.com/en-
us/library/ff649874.aspx

	Sitecore Web Services and SOA
	Discovering the Web Service
	API Reference Guide
	API Extension
	Sitecore Rocks Web Service

	Invoking the Web Service
	Using the Service as a Reference
	Setting Up the Items in the Sitecore Content Tree
	Invoking the Web Service

	Using the GetXML and InsertXML Methods
	Creating a Proxy for the Web Service

	Support for Industry Standards
	Security
	Transport-Level Security
	Application-Level Security
	Security Considerations for the Sitecore Web Service

