
Sitecore E-Commerce Services 1.2
Developer's Cookbook Rev: 2012-02-17

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Sitecore E-Commerce Services 1.2

Developer's Cookbook
Configuring and Developing with Sitecore E-Commerce Services

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 2 of 46

Table of Contents

Chapter 1 Introduction .. 3
Chapter 2 SES Technical Overview .. 4

2.1 The SES Domain Model ... 5
2.2 Unity Application Block Overview.. 6

2.2.1 The Unity Configuration File ... 7
2.2.2 The initialize Pipeline .. 8
2.2.3 Dependency Injection ... 8
2.2.4 How to Resolve a SES Component .. 9
2.2.5 How to Add an Implementation to the Unity Configuration ... 9
2.2.6 How to Add a Contract to the Unity Configuration ... 9
2.2.7 How to Replace a SES Component .. 10
2.2.8 How to Configure Unity for Multiple Implementations of the Same Contract 10

2.3 SES Product Management ... 12
2.3.1 Product URLs and Product Resolution .. 12

How to Specify the Product URL Format ... 12
2.3.2 Product Presentation .. 12

How to Specify a Product Presentation Format .. 13
How to Update a Product Presentation Format .. 13
How to Define a New Product Presentation Format ... 13

Chapter 3 Adding Customized Product Search Criteria ... 15
3.1 The Need for Product Search Configuration and Extensibility ... 16
3.2 Extending the Product Search Group Template .. 17
3.3 Extending the Resolve Strategy .. 19

Extending the DatabaseCrawler .. 19
Extending the ICatalogProductResolveStrategy Class ... 20
Configuring SES and Lucene .. 22

3.4 Extending the Product Search Catalog ... 24
Extending the CatalogQueryBuilder ... 24
Creating a Products Source .. 26
Defining a New Editor in the Core Database .. 27
Creating a Product Catalog ... 27

Chapter 4 SES Core Configuration ... 29
4.1 Configuration .. 30
4.2 Commands... 31
4.3 Events .. 33
4.4 XSLExtensions ... 34
4.5 Settings .. 38
4.6 Pipelines .. 40

4.6.1 The <pipelines> Element .. 40
<initialize> ... 41
<preprocessRequest> ... 42
<httpRequestBegin> ... 43
<getConfiguration>.. 43
<startTracking> ... 43
<orderCreated>... 43
<customerCreated> .. 44
<paymentStarted> .. 44
<renderLayout>... 44
<getContentEditorFields> .. 44

4.6.2 The <Processors> Element .. 45
4.7 Search ... 46

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 3 of 46

Chapter 1

Introduction

This document contains a technical overview of the Sitecore E-Commerce Services
(SES). It also describes how to use the Unity application block to configure SES, the
SES programming contracts, and includes instructions for configuring SES
components.

You can use Sitecore to manage multiple websites. You can configure SES to use
different data stores for each managed website. For example, different managed
websites can store product, order, and other business information in different
locations in Sitecore, and in different external systems.

This document contains the following chapters:

 ‎Chapter 1 — Introduction
This chapter contains a brief description of this manual.

 ‎Chapter 2 — SES Technical Overview
This chapter contains a description of the domain model, the Unity application block,
and Sitecore E-Commerce Services product management system.

 ‎Chapter 3 —
Adding Customized Product Search Criteria
This chapter describes how to extend the product search feature in SES.

 ‎Chapter 4 — SES Core Configuration
This chapter describes the configurable elements in SES.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 4 of 46

Chapter 2

SES Technical Overview

This chapter provides a technical overview of Sitecore E-Commerce Services,
including the domain model, the Unity dependency injection container, and
information about how Sitecore E-Commerce Services manages product information.

This chapter contains the following sections:

 The SES Domain Model

 Unity Application Block Overview

 SES Product Management

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 5 of 46

2.1 The SES Domain Model

The SES domain model is an API layer that defines contracts to abstract SES functionality, such as
product, customer, and order information storage. The Sitecore.Ecommerce.DomainModel

namespace in the Sitecore.Ecommerce.DomainModel.dll assembly contains the SES domain

model.

The default implementation of the SES domain model stores data as items in the Sitecore content
tree. For example, a product definition item describes each product that the website sells, and the
complete SES purchasing process results in a new order definition item in the content tree. You can
replace elements of the domain model, and you can use different implementations based on logical
conditions. Multiple managed websites can share implementations of the domain model and the data
that those implementations abstract, or each managed website can use different implementations and
data.

To integrate external systems with SES, you can implement processes that use the default
implementation of the domain model to import data into Sitecore, or you can replace components of
the SES domain model with custom implementations that access external systems directly.

SES includes a sample implementation that uses presentation components developed for the Web
Forms for Marketers module to provide a complete online store. For more information about the Web
Forms for Marketers module, see
http://sdn.sitecore.net/Products/Web%20Forms%20for%20Marketers.aspx.

You can use the example implementation, or you can learn how to implement a custom solution using
the code that it contains.

Important
Whenever possible, use contracts in the domain model rather than the concrete implementations of
those contracts.

http://sdn.sitecore.net/Products/Web%20Forms%20for%20Marketers.aspx

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 6 of 46

2.2 Unity Application Block Overview

SES uses the Unity application block (Unity) to support customization and integration with such
external systems. The Unity application block is a lightweight, extensible dependency injection
container, which among other features, provides symbolic names for different implementations of
various SES features described by the domain model. Dependency injection is a strategy for
specifying relations between types in object-oriented applications. Dependency injection provides a
form of inversion of control, moving logic for type specification from code to the dependency injection
container. Unity injects the appropriate types into the application at runtime to allow the use of
different implementations of a single function depending on configuration, conditions, and code. Unity
provides constructor injection, property injection, and method call injection. The Unity container works
like a factory to instantiate objects in a manner similar to the providers pattern, but with greater
flexibility.

For more information about the Unity Application Block, see http://unity.codeplex.com/.

Unity can designate the software components an application will use, and which software components
other components can use. Complex objects typically depend on other objects. Unity helps to ensure
that each object correctly instantiates and populates the right type of object for each such
dependency.

The Unity architecture supports the loose coupling of application components. SES developers can
reference relatively abstract types, and Unity injects the appropriate implementations at runtime.

The Unity application block provides the following benefits for developers who customize and extend
SES:

Flexibility

Unity allows developers to specify types and dependencies through configuration and at runtime,
deferring configuration to the container.

Simplification

The simplification of object instantiation code, especially for hierarchical structures with dependencies,
which simplifies application code.

Abstraction

The abstraction of requirements through type information and dependencies.

Service locator capability

SES supports the persistence of the container, such as within the ASP.NET session or application, or
through Web services or other techniques. For more information about the Service Locator pattern,
see http://msdn.microsoft.com/en-us/library/ff649658.aspx.

With Unity, you can easily configure SES to use custom implementations for specific features,
including:

 Configuration components, such as general settings.

 Business objects, such as customers and orders.

 Business logic, such as sending e-mail or locating a product.

 Payment providers, such as specific payment gateways.

 Internal logic, such as mapping in-memory storage to long-term storage.

With SES and Unity, you can use different implementations of an interface or descendants of an
abstract or another base class to achieve a common function for different managed websites. For
example, different managed websites can access customer information from different systems. Unity
makes it easier to integrate external business systems that are typically involved in ecommerce into a
SES implementation.

http://unity.codeplex.com/
http://msdn.microsoft.com/en-us/library/ff649658.aspx

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 7 of 46

In this document, the term contract refers to an interface that a class implements, an abstract or
concrete base class from which it inherits. The term implementation refers to a class that implements
a given contract.

The SES entities defined with Unity include:

 Contracts define Application Programming Interfaces (APIs).

 Implementations define concrete instances that implement contracts.

 Mappings configure which implementations to inject.

 Dependencies configure which dependent implementations to inject.

Unity allows you to define contracts using interfaces, abstract classes, and concrete classes. An
implementation can implement an interface, inherit from an abstract base class, inherit from a
concrete base class, or inherit directly from System.Object. A contract defined by a concrete class

can serve as its own implementation.

Note
To work with the SES APIs that depend on the Unity application block, you may need to add a
reference to the Microsoft.Practices.Unity.dll assembly in the /bin subdirectory to the

Visual Studio project. Remember to set the Copy Local property of the reference to False.

The following diagram describes the SES API layers. The example UI pages access APIs in the
domain model, and SES uses Unity to resolve those API calls to concrete implementations of those
contracts.

UIAPI

Implementation Layer

Sitecore Ecommerce Abstraction Layer (Domain Model)

Default Providers (based on
Sitecore data providers)

Custom Providers (Navision)

Inversion of Control Container (Unity configuration)
Component Kit

(Example pages)

2.2.1 The Unity Configuration File

SES manages the Unity configuration in the /App_Config/Unity.config file. The Unity

configuration file consists of two main parts:

 Each /unity/aliases element in the Unity configuration file defines a type alias, which

provides a symbolic name for a contract or implementation, such as an interface, an abstract
type, or a concrete type.

 Each /unity/container/register element in the Unity configuration file specifies a

concrete type that implements a contract identified by a /unity/alias element.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 8 of 46

2.2.2 The initialize Pipeline

SES adds two processors to the initialize pipeline defined in the Web.config file.

Note
SES uses the /App_Config/Include/Sitecore.Ecommerce.config file to extend the

Web.config file.

Based on Unity configuration, the ConfigureEntities processor in the initialize pipeline

initializes the entities that SES uses. This processor loads an inversion of the control container into
the SES context as a static resource in memory.

The RegisterEcommerceProviders processor in the initialize pipeline initializes various SES

implementations.

2.2.3 Dependency Injection

With Unity, you can designate dependencies between entities.

For example, for search features, the IOrderManager contract depends on an object that

implements the ISearchProvider contract. The following excerpts from the Unity configuration

define that the default implementation of the IOrderManager contract uses the

FastQueryItemSearchProvder implementation of the ISearchProvider interface by passing

an instance of FastQueryItemSearchProvder to the constructor for that IOrderManager.

<unity>

 ...

 <alias alias="IOrderManager"

 type="Sitecore.Ecommerce.DomainModel.Orders.IOrderManager`1..."/>

 ...

 <alias alias="ISearchProvider"

 type="Sitecore.Ecommerce.Search.ISearchProvider, Sitecore.Ecommerce.Kernel"/>

 ...

 <alias alias="OrderManager"

 type="Sitecore.Ecommerce.Orders.OrderManager`1, Sitecore.Ecommerce.Kernel"/>

 ...

 <register type="ISearchProvider" mapTo="FastQuerySearchProvider"

 name="FastQuerySearchProvider" />

 ...

 <container>

 ...

 <register type="IOrderManager" mapTo="OrderManager">

 <lifetime type="perthread" />

 <constructor>

 <param name="searchProvider">

 <dependency name="FastQuerySearchProvider"/>

 </param>

 </constructor>

 </register>

 ...

 </container>

</unity>

Note
To indicate generic type parameters in the Unity configuration, append a single end quotation mark
(“`”) followed by a number.

For example, to specify the
Sitecore.Ecommerce.DomainModel.Currencies.ICurrencyManager<TTotals,

TCurrency> interface that requires two generic types, specify a type signature followed by a back

quote and the number 2:

Sitecore.Ecommerce.DomainModel.Currencies.ICurrencyManager2

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 9 of 46

2.2.4 How to Resolve a SES Component

Use the Sitecore.Ecommerce.Context.Entity.Resolve() method to resolve a type

configured with Unity. Pass the type of the contract to the method as a generic type parameter. For
example, to access the default implementation of the IProductRepository contract:

using Sitecore.Ecommerce;

...

Sitecore.Ecommerce.DomainModel.Products.IProductRepository productRepository =

 Sitecore.Ecommerce.Context.Entity.Resolve

 <Sitecore.Ecommerce.DomainModel.Products.IProductRepository>();

The signature of the Resolve() method is an extension method in the

Sitecore.Ecommerce.IoCContainerExtensions class.

To use this signature, add the following line at the top of your class:

using Sitecore.Ecommerce;

Alternatively, fully designate this implementation of the Resolve() method:

Sitecore.Ecommerce.DomainModel.Products.IProductRepository productRepository =

 Sitecore.Ecommerce.IoCContainerExtensions.Resolve

 <Sitecore.Ecommerce.DomainModel.Products.IProductRepository>

 (Sitecore.Ecommerce.Context.Entity);

To access a named entity, pass the name of an entity as the first parameter to the
Sitecore.Ecommerce.Context.Entity.Resolve() method.

For example, to retrieve the IProductRepository implementation called

MyProductRepository:

Sitecore.Ecommerce.DomainModel.Products.IProductRepository myProductRepository =

 Sitecore.Ecommerce.Context.Entity.Resolve

 <Sitecore.Ecommerce.DomainModel.Products.IProductRepository>("MyProductRepository");

For more information about how SES resolves types, see the section How to Configure .

2.2.5 How to Add an Implementation to the Unity Configuration

To add an additional implementation of a contract to the Unity configuration:

1. In the Visual Studio project, create a class that implements the required interface or inherits
from the appropriate base class.

2. In the Unity configuration, insert an additional /unity/alias element.

3. In the new /unity/alias element, set the alias attribute to a unique alias.

4. In the new /unity/alias element, set the type attribute to the signature of the .NET class.

For more information about how to configure SES to use the implementation, see the sections How to
Replace a SES Component and How to Configure .

2.2.6 How to Add a Contract to the Unity Configuration

To add a contract to the Unity configuration:

1. In the Unity configuration file, add a /unity/alias element. Set the alias attribute of the

new /unity/alias element to a unique value that identifies the contract. Set the type

attribute of the new /unity/alias element to the .NET type of the interface or class that

defines the contract. For example:

<alias alias="MyType" type="Namespace.MyType, MyAssembly"/>

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 10 of 46

2. If the type that defines the contract does not also serve as the implementation of that contract,
then configure one or more implementations of the contract.

For more information about how to define an implementation of the contract, see the section
How to Add an Implementation to the Unity Configuration.

2.2.7 How to Replace a SES Component

To configure SES to use a custom component for a feature:

1. In the Unity configuration, add a /unity/alias element to register the new implementation.

For more information about how to add an implementation to the Unity configuration, see the
section How to Add an Implementation to the Unity Configuration.

2. In the Unity configuration, set the mapTo attribute of the /unity/container/register

element with a value for the type attribute that specifies the value of the alias attribute of

the /unity/alias element that defines the contract or implementation to the value of the

alias attribute of the new /unity/alias element that specifies the implementation.

In the /unity/container/register element, the type attribute identifies the alias of the

contract, the mapTo attribute identifies the alias of the implementation, and the optional name attribute

defines a token with which to resolve the implementation in API calls.

2.2.8 How to Configure Unity for Multiple Implementations of the Same Contract

In Unity, you can define several implementations of a contract.

To use different implementations of contracts for different managed websites:

1. Add any required implementations to the Unity configuration.

For more information about how to add an implementation to the Unity configuration, see the
section How to Add an Implementation to the Unity Configuration.

2. For each implementation, in the Unity configuration, create a
/unity/container/register element.

Note

To create the new /unity/container/register element, copy an existing

/unity/container/register element that is associated with the same contract.

3. in the new /unity/container/register element, set a unique value for the name

attribute.

For example, you can configure the /unity/container/register elements in the Unity

configuration to:

 Make SES use the ProductCategory implementation with the alias MyProductCategory

for the managed websites called site2 and site3.

 Use the default ProductCategory implementation with the alias

SitecoreProductCategory for all the other managed websites.

<!-- contract -->

<alias alias="ProductCategory"

 type="Sitecore.Ecommerce.DomainModel.Products.ProductCategory..." />

<!-- implementations -->

<alias alias="SitecoreProductCategory"

 type="Sitecore.Ecommerce.Products.ProductCategory, Sitecore.Ecommerce.Kernel" />

<alias alias="MyProductCategory" type="MyNamespace.ProductCategory, MyAssembly" />

<!-- uses -->

<container>

 <register type="ProductCategory" mapTo="SitecoreProductCategory">

 <interceptor type="VirtualMethodInterceptor" />

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 11 of 46

 <policyInjection />

 </register>

 <register type="ProductCategory" mapTo="MyProductCategory" name="site2">

 <interceptor type="VirtualMethodInterceptor" />

 <policyInjection />

 </register>

 <register type="ProductCategory" mapTo="MyProductCategory" name="site3">

 <interceptor type="VirtualMethodInterceptor" />

 <policyInjection />

 </register>

Use the following setting in Unity to access a named implementation by passing the name of the
implementation with the site name to the Sitecore.Ecommerce.Context.Entity.Resolve()

method:

<register type="ProductCategory" mapTo="MyOtherProductCategory"

 mapTo="MyProductCategory" name="site3MyOtherProductCategory">

Use the following code to access the ProductCategory implementation called

site3MyOtherProductCategory:

Sitecore.Ecommerce.DomainModel.Products.ProductCategory productCategory =

 Sitecore.Ecommerce.Context.Entity.Resolve

<Sitecore.Ecommerce.DomainModel.Products.ProductCategory>("site3MyOtherProductCategory");

If you pass a parameter to the Sitecore.Ecommerce.Context.Entity.Resolve() method and

if an implementation exists, Unity injects that type.

If you do not pass a parameter to the Sitecore.Ecommerce.Context.Entity.Resolve()

method, Unity injects the default implementation of the contract.

Note
If no default implementation exists, Unity raises an error.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 12 of 46

2.3 SES Product Management

SES stores product information in repositories that typically exist outside of the content tree of any
managed website, thereby allowing multiple websites to share product repositories.

SES provides logic to generate product URLs that appear to be within the website, and enhances the
logic that Sitecore applies to determine and present the product definition items associated with these
URLs.

2.3.1 Product URLs and Product Resolution

SES adds the ProductResolver processor after the default ItemResolver processor in the

httpRequestBegin pipeline defined in the Web.config file. If the default ItemResolver cannot

resolve the context item from the requested URL, then the ProductResolver uses a

VirtualProductResolver to attempt to determine a product from the requested URL. If the

VirtualProductResolver can determine the product, it sets the context item to the item that

defines that product.

How to Specify the Product URL Format

To specify the product URL format for a managed website or branch:

1. In the Content Editor, in the home item for the managed Web site or the root item of the
branch, select the System section,

2. In the Display Products Mode field, select one of the ProductUrlProcessor definition

items.

Note
If the Display Products Mode field does not exist for an item, add the Ecommerce/Product

Categories/Product Search Group Folder data template to the base templates for the data

template associated with the item.

SES uses the value of the Display Products Mode field in the nearest ancestor of the context item
that defines a value for that field. For example, given the URL /products.aspx, if the

<home>/products item has a value for Display Products Mode field, SES applies that value,

otherwise SES applies the value of the Display Products Mode field in the home item.

2.3.2 Product Presentation

The URLs of SES product pages map to items that do not define layout details. For more information
about the layout details, see the Presentation Component Reference at
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Reference.aspx.

Important
Do not update the layout details for a product or the standard values of a data template for products.

Note
To preview the presentation of a product, use the Page Editor or the Preview viewer to navigate from
a page that links to the product to the product detail page.

SES replaces the InsertRenderings processor in the renderLayout pipeline defined in the

Web.config file with the ProcessProductPresentation processor. When processing an HTTP

request for a product page, the ProcessProductPresentation processor applies the layout

details from the item that is specified in the Product Detail Presentation Storage field.

This field is in the nearest ancestor of the logical parent item of the virtual product item that defines a
value for that field. For example, in the /products/product_name.aspx URL, if the

http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Reference.aspx

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 13 of 46

<home>/products item has a value in the Product Detail Presentation Storage field, SES applies

that value, otherwise SES applies the value in the Product Detail Presentation Storage field of the
Home item.

Note
If the Product Detail Presentation Storage field does not appear in an item, add the

Ecommerce/Product Categories/Product Search Group data template to the base

templates of the data template associated with the item.

How to Specify a Product Presentation Format

To specify the presentation format that you want to use to display the products associated with a
page:

1. In the Content Editor, edit the page definition item.

2. In the page definition item, on the Content tab, in the Products in Category section, in the
Product Detail Presentation Storage field, select a product presentation definition item.

How to Update a Product Presentation Format

To update an existing product presentation format:

1. In the Content Editor, edit the product presentation definition item. The product presentation
definition item is a child of the
/Sitecore/System/Modules/Ecommerce/System/Product Presentation

Repository item.

2. In the product presentation definition item, edit the layout details.

For more information about applying layout details, see the Presentation Component Cookbook at
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Cookbook.aspx.

Note
You can use access rights to control which users can apply various product presentation formats.

To apply access rights:

1. You can change the type of the Product Detail Presentation Storage in the

Ecommerce/Product Categories/Product Search Group item from Lookup to

Droptree.

2. Create folders under /Sitecore/System/Modules/Ecommerce/System/Product

Presentation Repository that you can use to store the different groups of presentation

format definition items.

3. Apply access rights to those folders.

How to Define a New Product Presentation Format

To define a new product presentation format:

1. In the Content Editor, select the
/Sitecore/System/Modules/Ecommerce/System/Product Presentation

Repository item.

2. In the Content Editor, insert a new product presentation definition item using the
Ecommerce/Product/Product Presentation Storage data template.

3. In the new product presentation definition item, update the product presentation format.

For more information about updating the product presentation format, see the section How to
Update a Product Presentation Format.

http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Cookbook.aspx

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 14 of 46

4. Optionally, you can apply the new product presentation format to the existing pages. For more
information about applying a product presentation format, see the section How to Specify a
Product Presentation Format.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 15 of 46

Chapter 3

Adding Customized Product Search Criteria

This chapter describes how to extend the product search feature in SES. It shows
how to customize the search options and how to have more control over product
presentation in both of the frontend and backend. By the frontend we mean the
display of search results for the page visitor and by the backend we mean the
Content Editor and Template Manager.

This chapter contains the following sections:

 The Need for Product Search Configuration and Extensibility

 Extending the Product Search Group Template

 Extending the Resolve Strategy

 Extending the Product Search Catalog

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 16 of 46

3.1 The Need for Product Search Configuration and Extensibility

To illustrate the need for changing product search, consider the case of a camera and photographic
supply webshop that is divided into sections that contain different models, categories, proficiency
levels, and interrelated products. A vendor will not usually show all the cameras on the same page but
they will rather show each camera with a group of products of the same proficiency level. For
example, professional cameras are usually shown with professional lenses and others accessories.
Moreover, one product can be shown in multiple groups.

This chapter explains how to create a different classification than the one used in the repository.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 17 of 46

3.2 Extending the Product Search Group Template

This section describes how to classify a product according to your business needs. You must create
or edit the classifications that you need in the Product Search Group template.

A convenient starting point is to extend this template with additional fields for storing search criteria.
You can use the Product Search Group template to define a category structure that reflects the way
the products are presented on the front end and not in the structure of the repository.

This section describes how to use the Content Editor to add a new search criterion to the Product
Search Group template by applying an additional filter to the products selected.

To add a new search criterion to the Product Search Group template:

1. Log in into the Content Editor and navigate to the Product Search Group template.

2. In the Content tab, create a new template that inherits from the Product Search Group
template and call it My Product Search Group.

3. Click the Builder tab and in the Catalog Settings section, add a new criterion, call it Search
Treelist.

4. In the Type field, select Treelist as the type. You must select Treelist as the type if you want
to select multiple folders from the product repository.

5. In the Source field, enter the path (or GUID) of the product repository.

6. Create a page item that inherits from the My Product Search Group template and call it
mytest.

You should now be able to select the domain for your search from the treelist.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 18 of 46

In the following image, Cameras is the selected domain.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 19 of 46

3.3 Extending the Resolve Strategy

To search for products in the domain selected in the Treelist control, you must:

 Extend the DatabaseCrawler to index this product category parent folder.

 Extend the QueryCatalogProductResolveStrategy class to find the products based on

a particular product category folder.

Extending the DatabaseCrawler

Essentially, you use the DatabaseCrawler class to build product and web indexes.

The Sitecore.Search.DatabaseCrawler class scans a specific repository such as a database

or file system, extracts information, and stores it in a search index. It then makes this information
available to Sitecore Search.

The Sitecore.Search.DatabaseCrawler class performs the following functions:

 IndexAllFields — Extracts data from a specific document that is requested by the crawler

or the monitor. The data extracted consists of metadata and content.

o Metadata — The Indexer extracts metadata that the system understands. You can filter

and prioritize the metadata, for example, by using the _name or _template field.

o Content — The Indexer also extracts body content and prioritizes it. You can use boost

to prioritize the content in the document. This is usually only applied to a single field,
giving the document a single prioritization.

 DatabaseCrawler — Traverses the storage system and uses the indexer to populate the

search index.

 MonitorChanges — Monitors changes in the repository and updates the search index.

The following code shows how to extend the DatabaseCrawler class to add a special field to a

document in Lucene that represents the parent category folder in SES:

1. In Visual Studio, create a new project and call it Sample1.

2. Add the following class to the project and call it SampleDatabaseCrawler.

namespace Sample1.Kernel.Search

{

 using Lucene.Net.Documents;

 using Sitecore.Data;

 using Sitecore.Data.Items;

 // SampleDatabaseCrawler class is inherited from

Sitecore.Ecommerce.Search.DatabaseCrawler

 // Created so we can add the needed field to the Lucene index products when

resolving products based on which product category folder they are located in

 public class SampleDatabaseCrawler : Sitecore.Ecommerce.Search.DatabaseCrawler

 {

 // Overridden method for adding special fields to the Lucene product index

 // <param name="document">The Lucene document to add a new field to</param>

 // <param name="item">the item to get the value from</param>

 protected override void AddSpecialFields(Document document, Item item)

 {

 //Call the base class for setting the base special fields on the Lucene

document

 base.AddSpecialFields(document, item);

 //Add the field _parent to the document for the Luceneindexeer

 document.Add(CreateTextField("_parent", ShortID.Encode(item.Parent.ID)));

 }

 }

}

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 20 of 46

Once you have extended the DatabaseCrawler class to create the _parent field for the Indexer,

you are ready to extend the search strategy to use this index.

Extending the ICatalogProductResolveStrategy Class

The ICatalogProductResolveStrategy contract defines the way that SES retrieves the

products that are displayed on a given webpage.

The implementation of this contract:

1. Reads search criteria form the current item based on the product search group template.

2. Builds and executes a search using the criteria against the product repository.

3. Returns the list of products to display.

The following classes are the default Implementations of the ICatalogProductResolveStrategy

contract:

ProductListCatalogResolveStrategy

You can use this class to retrieve the products that have been manually selected and associated with
the webpage item. (sitecore/system/Modules/Ecommerce/System/Product Selection

Method).

QueryCatalogProductResolveStrategy

You can use this class to retrieve the products that results from the search and store the query
parameters on the webpage item (sitecore/system/Modules/Ecommerce/System/Product

Selection Method). It implements the CatalogProductResolveStrategyBase class which

implements the ICatalogProductResolveStrategy interface.

You can also extend the class that represents the QueryCatalogProductResolveStrategy to

accommodate the search:

1. In Visual Studio, open the project called Sample1 that you created in the last subsection.

2. Add the following class and name it SampleQueryCatalogProductResolveStrategy.

namespace Sample1.Kernel.Catalogs

{

 using System.Collections.Generic;

 using System.Linq;

 using Sitecore.Data;

 using Sitecore.Data.Items;

 using Sitecore.Diagnostics;

 using Sitecore.Ecommerce;

 using Sitecore.Ecommerce.Configurations;

 using Sitecore.Ecommerce.Search;

 // <summary>

 // SampleQueryCatalogProductResolveStrategy class is inherited from

 Sitecore.Ecommerce.Catalogs.QueryCatalogProductResolveStrategy

 // Created to implement the functionality to resolve products based on which

 repository folder they are located in.

 // </summary>

 public class SampleQueryCatalogProductResolveStrategy :

 Sitecore.Ecommerce.Catalogs.QueryCatalogProductResolveStrategy

 {

 // <summary>

 // The Search TreeList field name

 // </summary>

 private read only string searchTreelistFieldName;

 // <summary>

 // Initializes a new instance of the SampleQueryCatalogProductResolveStrategy

 class.

 // </summary>

 // <param name="searchTextBoxesFieldName">Names of the searchtextboxes</param>

 // <param name="searchChecklistsFieldName">Names of the Checkboxes</param>

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 21 of 46

 // <param name="searchTreelistFieldName">name of the treelist field</param>

 public SampleQueryCatalogProductResolveStrategy(string

 searchTextBoxesFieldName, string searchChecklistsFieldName, string

 searchTreelistFieldName)

 : base(searchTextBoxesFieldName, searchChecklistsFieldName)

 {

 // Testing for not null or empty

 Assert.ArgumentNotNullOrEmpty(searchTreelistFieldName,

 "searchTreelistFieldName");

 // Assigning to local variable

 this.searchTreelistFieldName = searchTreelistFieldName;

 }

 // <summary>

 // Overridden method for building the search query for searching the Lucene

 index

 // </summary>

 // <param name="catalogItem">the catalog item we are resolving from (product

 catalog)</param>

 // <returns>The query we build for searching</returns>

 protected override Query BuildSearchQuery(Item catalogItem)

 {

 // Let’s resolve the actual field on the current catalog item

 string searchTreelistFieldText =

 catalogItem[this.searchTreelistFieldName];

 // If nothing defined, returning “error in setup” on template

 if (string.IsNullOrEmpty(searchTreelistFieldText))

 {

 return default(Query);

 }

 // Calling the base class for getting all the query fields defined in the

 base class

 Query query = base.BuildSearchQuery(catalogItem);

 // Getting the configuration from SES

 BusinessCatalogSettings businessCatalogSettings =

 Context.Entity.GetConfiguration<BusinessCatalogSettings>();

 // Testing if configuration is set - if not, fail in setup by user.

 Assert.IsNotNull(businessCatalogSettings, GetType(), "Business Catalog

 settings not found.", new object[0]);

 // Getting the root from where products are located (product repository)

 Item productRepositoryRootItem =

 catalogItem.Database.GetItem(businessCatalogSettings.ProductsLink);

 // Testing if the root is set - if not, this is a failure from the user.

 Assert.IsNotNull(productRepositoryRootItem, "Product Repository Root Item

 is null.");

 // If the query is empty, we need to add some stuff to it

 if (query == default(Query))

 {

 query = new Query { SearchRoot =

 productRepositoryRootItem.ID.ToString() };

 }

 // Let´s parse the field from the current catalog items

 if (!string.IsNullOrEmpty(searchTreelistFieldText))

 {

 this.ParseTreelistField(searchTreelistFieldText, ref query);

 }

 return query;

 }

 // <summary>

 // Function for parsing TreeList to query on the catalog item

 // </summary>

 // <param name="ids">string with | separated list of categoryfolder

 Ids</param>

 // <param name="query">the query to append to</param>

 protected virtual void ParseTreelistField(string ids, ref Query query)

 {

 // Creating a list if more than one folder is defined

 List<string> folders = new List<string>();

 if (ids.Contains("|"))

 {

 folders.AddRange(ids.Split('|'));

 }

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 22 of 46

 else

 {

 folders.Add(ids);

 }

 Query sub = new Query();

 int count = 0;

 // Iterating through each folder where there's a Sitecore ID

 foreach (string s in folders.Where(ID.IsID))

 {

 // Appending the value of the folder to the query and telling the

 query to search for the field _parent in the product Lucene index

 sub.AppendField("_parent", ShortID.Encode(s), MatchVariant.Exactly);

 // If more than one - we must add an “Or” to the query

 if (count < (folders.Count - 1))

 {

 sub.AppendCondition(QueryCondition.Or);

 }

 count++;

 }

 // Appending the built query to the main query

 query.AppendSubquery(sub);

 }

 }

}

Configuring SES and Lucene

To register the newly created database crawler and the resolve strategy, you must configure the
search in two files — Sitecore.Ecommerce.config and Unity.config.

1. In the Sitecore.Ecommerce.config file, under the indexes element, in the

Configuration element, add the following index:

 <!-- Products index - Used by SES for resolving products - should not be

 used on frontend for searching-->

 <index id="products" type="Sitecore.Search.Index, Sitecore.Kernel">

 <param desc="name">$(id)</param>

 <param desc="folder">__products</param>

 <Analyzer type="Sitecore.Ecommerce.Search.LuceneAnalyzer,

 Sitecore.Ecommerce.Kernel" />

 <locations hint="list:AddCrawler">

 <master type="Sample1.Kernel.Search.SampleDatabaseCrawler, Sample1">

 <Database hints="master">master</Database>

 <!-- Repository root where products are stored-->

 <!--<Root>{054AEC0D-9D92-4C3A-80AC-A0E78773EAB7}</Root>-->

 <!-- Repository root where SES products are stored-->

 <Root hints="masterRoot">{502EA9FA-19E7-4DA5-8EA4-56C374AED45B}</Root>

 <Tags hint="master products">master products</Tags>

 </master>

 <web type="Sample1.Kernel.Search.SampleDatabaseCrawler, Sample1">

 <Database hints="web">web</Database>

 <!-- Repository root where products are stored-->

 <!--<Root>{054AEC0D-9D92-4C3A-80AC-A0E78773EAB7}</Root>-->

 <!-- Repository root where SES products are stored-->

 <Root hints="webRoot">{502EA9FA-19E7-4DA5-8EA4-56C374AED45B}</Root>

 <Tags>web products</Tags>

 </web>

 </locations>

 </index>

2. In the Search.config file, in the Unity element, add the following alias.

<alias alias="SampleQueryCatalogProductResolveStrategy" ´

 type="Sample1.Kernel.Catalogs.SampleQueryCatalogProductResolveStrategy, Sample1"/>

3. In the Search.config file, in the Container element, add the following registry.

<register type="ICatalogProductResolveStrategy"

 mapTo="SampleQueryCatalogProductResolveStrategy" name="My product Repository query">

 <lifetime type="singleton" />

 <constructor>

 <param name="searchTextBoxesFieldName">

 <value value="Search Text Boxes"/>

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 23 of 46

 </param>

 <param name="searchChecklistsFieldName">

 <value value="Search Checklists"/>

 </param>

 <param name="searchTreelistFieldName">

 <value value="Search Treelist"/>

 </param>

 </constructor>

 </register>

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 24 of 46

3.4 Extending the Product Search Catalog

This section describes how to extend the Product Search Catalog to accommodate the product
search extension in the backend. In other words, it describes how to make the search results visible in
the Content Editor.

To extend the Product Search Catalog, you must:

 Extend the CatalogQueryBuilder.

 Create a products source.

 Reference this source in the Content Editor.

Extending the CatalogQueryBuilder

The CatalogQueryBuilder class builds the search query that is used by SES when querying the

product repository.

Note
You can only use the CatalogQueryBuilder in the product catalog.

To extend the CatalogQueryBuilder class to reflect the search result in the backend:

1. In Visual Studio, open the project called Sample1 that you created earlier.

2. Add the following class to the project and name it CatalogQueryBuilder.

namespace Sample1.Shell.Applications.Catalogs.Models.Search

{

 using System.Linq;

 using Sitecore.Ecommerce.Search;

 using Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search;

 using Sitecore.Ecommerce.Configurations;

 using Sitecore.Ecommerce;

 using Sitecore.Diagnostics;

 using System.Collections.Generic;

 using Sitecore.Data;

 // <summary>

 // CatalogQueryBuilder inheriting from

 Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search.CatalogQueryBuilder

 // Class is used for implementing functionality for resolving our result on the

 product page in the sitecore content editor.

 // </summary>

 public class CatalogQueryBuilder :

 Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search.CatalogQueryBuilder

 {

 // <summary>

 // Buildquery function overridden - used for building the actual query for

 searching

 // </summary>

 // <param name="options">Seachoptions</param>

 // <returns>The query to be used for search</returns>

 public override Query BuildQuery(SearchOptions options)

 {

 // Get the base query - we still need the functionality from there

 var query = base.BuildQuery(options);

 // Requesting the id of the item we are resolving from in the content

 editor

 var id = Sitecore.Context.Request.QueryString.Get("id");

 // Getting the catalog item from the DB

 var catalogItem = Database.GetDatabase("master").GetItem(new ID(id));

 // Let’s resolve the actual field on the current catalog item

 var searchTreelistFieldText = catalogItem["Search Treelist"];

 // Returning (error in set up)on the template, if nothing is defined

 if (string.IsNullOrEmpty(searchTreelistFieldText))

 {

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 25 of 46

 return query;

 }

 // Getting the configuration from SES

 var businessCatalogSettings =

 Context.Entity.GetConfiguration<BusinessCatalogSettings>();

 // Testing if configuration is set - if not, fail in setup by user

 Assert.IsNotNull(businessCatalogSettings, GetType(), "Business Catalog

 settings not found.", new object[0]);

 // Getting the root from where products are located (product repository)

 var productRepositoryRootItem =

 catalogItem.Database.GetItem(businessCatalogSettings.ProductsLink);

 // Testing if the root is set - if not this is a fail from the user

 Assert.IsNotNull(productRepositoryRootItem, "Product Repository Root Item

 is null.");

 // If the query is empty - we need to add some stuff to it

 if (query == default(Query))

 {

 query = new Query { SearchRoot =

 productRepositoryRootItem.ID.ToString() };

 }

 // let’s parse the treelist field from the current catalog items

 if (!string.IsNullOrEmpty(searchTreelistFieldText))

 {

 ParseTreelistField(searchTreelistFieldText, ref query);

 }

 return query;

 }

 // <summary>

 // Function for parsing treelist to query on the catalog item

 // </summary>

 // <param name="ids">string with | separated list of category folder

 Ids</param>

 // <param name="query">the query to append to</param>

 protected virtual void ParseTreelistField(string ids, ref Query query)

 {

 // Creating a list if more than one folder is defined

 var folders = new List<string>();

 if (ids.Contains("|"))

 {

 folders.AddRange(ids.Split('|'));

 }

 else

 {

 folders.Add(ids);

 }

 var sub = new Query();

 var count = 0;

 // Iterating through each folder where there is a Sitecore ID

 foreach (var s in folders.Where(ID.IsID))

 {

 // Appending the value of the folder to the query and telling the

 query to search for the field _parent in the product Lucene index

 sub.AppendField("_parent", ShortID.Encode(s), MatchVariant.Exactly);

 // If more than one, we of course need to add a or to the query

 if (count < (folders.Count - 1))

 {

 sub.AppendCondition(QueryCondition.Or);

 }

 count++;

 }

 // If the query is not empty, we need to be sure to add a AND condition.

 if (!query.IsEmpty())

 {

 query.AppendCondition(QueryCondition.And);

 }

 // Appending the built query to the main query

 query.AppendSubquery(sub);

 }

 }

}

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 26 of 46

Creating a Products Source

The main class that you should use in this scenario is the ProductsSource class. You can use the

methods in this class to initialize the search, build the query using the CatalogQueryBuilder

mentioned earlier, and return the result.

To create a products source, you should extend the class called ProductsSource —
Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search.ProductsSource

1. In Visual Studio, open the project named Sample1 that you created earlier.

Add the following class to the project and name it ProductsSource:

namespace Sample1.Shell.Applications.Catalogs.Models.Search

{

 using System.Linq;

 using System.Collections.Generic;

 using Sitecore.Ecommerce.DomainModel.Products;

 using Sitecore.Ecommerce.Search;

 using Sitecore.Ecommerce.Utils;

 using Sitecore.Ecommerce;

 using Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search;

 using Sitecore.Ecommerce.Shell.Applications.Catalogs.Models;

 // <summary>

 // ProductsSource inheriting from

 Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search.ProductsSource

 // this class is created so we can call the new query functionality we need for

 showing the result in the Sitecore content editor.

 // this class is also referred to on the copy made in Sitecore based on

 /sitecore/system/Modules/Ecommerce/Catalogs/Product Catalog

 // </summary>

 class ProductsSource :

 Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search.ProductsSource

 {

 // <summary>

 // Gets the entries.

 // </summary>

 // <param name="pageIndex">Index of the page.</param>

 // <param name="pageSize">Size of the page.</param>

 // <returns>Returns Entries</returns>

 public override IEnumerable<List<string>> GetEntries(int pageIndex, int

 pageSize)

 {

 // Let’s get the query

 var builder = new CatalogQueryBuilder();

 var query = builder.BuildQuery(SearchOptions);

 // Let’s resolve the product repository

 var productRepository = Context.Entity.Resolve<IProductRepository>();

 // Let’s do the search

 var products = productRepository.Get<ProductBaseData, Query>(query,

 pageIndex, pageSize);

 // let’s return the result

 return !products.IsNullOrEmpty() ? new

 EntityResultDataConverter<ProductBaseData>().Convert(products,

 SearchOptions.GridColumns).Rows : new GridData().Rows;

 }

 // <summary>

 // Gets the entry count

 // </summary>

 // <returns>Returns enties count.</returns>

 public override int GetEntryCount()

 {

 // Let’s get the query

 var builder = new CatalogQueryBuilder();

 var query = builder.BuildQuery(SearchOptions);

 // Let’s resolve the product repository

 var productRepository = Context.Entity.Resolve<IProductRepository>();

 return productRepository.Get<ProductBaseData, Query>(query).Count();

 }

 }

}

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 27 of 46

Defining a New Editor in the Core Database

When you create a product catalog, you must also define a new editor in the Core database. You
place the search catalog in the editor.

To create the editor:

1. Switch to the Core database.

2. Log in to the Content Editor.

3. Browse to the My Product Page item (Sitecore/content/Content

Editor/Ecommerce/My Product Page) and insert from template.

4. Select Editor as the template (/Sitecore Client/Content editor/Editor).

You should now be able to see the new editor created under Ecommerce.

Creating a Product Catalog

The last part of this task is to create a product catalog. You should also reference the product source
and the editor defined in the core database.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 28 of 46

To create a product catalog:

1. Switch to the Master database.

2. Under Sitecore/System/Modules/E-Commerce/Catalogs, create a new catalog and
call it My Product Catalog.

3. In the My Product Catalog item, in the Catalog Data Source field, enter the products source
reference.

4. Browse to the standard values of the My Product Search Group template

(Sitecore/Templates/My Sample Site/Products categories/ My Product

Search Group /_Standard Values).

5. On the Content tab, in the Editors field, click Edit and select the editor you defined in the last
section — My Product Page.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 29 of 46

Chapter 4

SES Core Configuration

This chapter guides you through the key configuration settings in SES.

This chapter contains the following sections:

 Configuration

This section presents the SES configuration files.

 Commands

This section describes the <commands> element.

 Events.

This section describes the <events> element.

 XSLExtensions

This section describes the <xslExtension> element.

 Settings

This section describes the <settings> element.

 Pipelines

This section describes the <pipelines> element.

 Search

This section describes the <search> element.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 30 of 46

4.1 Configuration

There are two important configuration files in the Sitecore installation:

 Unity.config

 Sitecore.Ecommerce.config

This chapter focuses on the Sitecore.Ecmmerce.config file because it contains the configuration

settings that do not exist in the content.

For information about the Unity.config, see the section Unity Application Block Overview.

Note
SES uses the /App_Config/Include/Sitecore.Ecommerce.config file to extend the

Unity.config file.

The following sections describe the key configuration elements in SES.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 31 of 46

4.2 Commands

This section describes the Ecommerce specific commands that are used in the Sitecore shell. These
commands are used to define the business logic for each of the UI controls in SES.

The following snippet presents the commands that are registered in the
Sitecore.Ecommerce.config file:

<commands>

 <command name="ordercatalog:changeorderstatus"

 type="Sitecore.Ecommerce.Shell.Applications.OrderCatalog.Commands.

 ChangeOrderStatus,Sitecore.Ecommerce.Shell"/>

 <command name="ordercatalog:editorder"

 type="Sitecore.Ecommerce.Shell.Applications.OrderCatalog.Commands.

 EditOrder,Sitecore.Ecommerce.Shell"/>

 <command name="ordercatalog:editorderlines"

 type="Sitecore.Ecommerce.Shell.Applications.OrderCatalog.Commands.

 EditOrderLines,Sitecore.Ecommerce.Shell"/>

</commands>

The following table describes the commands in the Sitecore.Ecommerce.config:

Command Name Command Type Description

Ordercatalog:ch

angeorderstatus

Sitecore.Ecommerce.Shell.Appl

ications.OrderCatalog.Command

s.ChangeOrderStatus,Sitecore.

Ecommerce.Shell

Calls the execute method of the

ChangeOrderStatus class. This

command changes the status of
an order to one of the following:

 Authorized

 Captured

 New

 Pending

 Processing

 Completed

 Canceled

 Closed

 Held

It changes the status according to
the rules defined for each state.

In the following image, you can
see where you can change the
status of an order.
On the Order tab, in the Order
Status group, you select the
status for the order.

Ordercatalog:ed

itororder

Sitecore.Ecommerce.Shell.Appl

ications.OrderCatalog.Command

s.EditOrder,Sitecore.Ecommerc

e.Shell

Calls the execute method of the

EditOrder class. This command
launches the Field Editor dialog
box where you can change the
content of the order based on the
fields in the order template.

To edit an order, in the
Operations group, click Edit
Order or Edit Header.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 32 of 46

Command Name Command Type Description

Ordercatalog:ed

itororderlines

Sitecore.Ecommerce.Shell.Appl

ications.OrderCatalog.Command

s.EditOrderLines,Sitecore.Eco

mmerce.Shell

Calls the execute method of the

EditOrderLines class. This

command moves the focus of the
Content Editor to the selected
order allowing you to modify the
order line that is located under the
Order item.

In the Operations group, click
Edit Order.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 33 of 46

4.3 Events

You can associate your Sitecore instance to a number of events in Sitecore. You can see the list of
predefined events in the <events> section of the Web.config file.

The following snippet contains the events that are registered in the Sitecore.Ecommerce.config

file:

<events>

 <event name="item:moved">

 <handler type="Sitecore.Ecommerce.StructuredData.EnableStructuredDataModule,

 Sitecore.Ecommerce.Kernel" method="OnItemSaved" />

 </event>

 <event name="item:saved">

 <handler type="Sitecore.Ecommerce.StructuredData.EnableStructuredDataModule,

 Sitecore.Ecommerce.Kernel" method="OnItemSaved" />

 <handler type="Sitecore.Ecommerce.Unity.ClearSiteSettingsCacheEventHandler,

 Sitecore.Ecommerce.Kernel" method="OnItemSaved" />

 <handler type="Sitecore.Ecommerce.Catalogs.VirtualProductResolverCleaner,

 Sitecore.Ecommerce.Kernel" method="OnItemSaved" />

 </event>

</events>

The following table describes the <events> elements in the Sitecore.Ecommerce.config:

Event Name Event Type Description

item:moved Sitecore.Ecommerce.StructuredDat

a.EnableStructuredDataModule,

Sitecore.Ecommerce.Kernel

Used to move an order from one
location to another. It executes the
OnItemSaved method that ensures

that the item which is based on the
order template is saved below the
order repository. It creates the
structured tree on the fly.

item:saved Sitecore.Ecommerce.StructuredDat

a.EnableStructuredDataModule,

Sitecore.Ecommerce.Kernel

Used to save an order in a location. It
executes the OnItemSaved method

that ensures that the item which is
based on the order template is saved
below the order repository. It creates
the structured tree on the fly.

Sitecore.Ecommerce.Unity.ClearSi

teSettingsCacheEventHandler,

Sitecore.Ecommerce.Kernel

Sitecore.Ecommerce.Catalogs.Virt

ualProductResolverCleaner,

Sitecore.Ecommerce.Kernel

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 34 of 46

4.4 XSLExtensions

XSLT is a technology that can be used to output HTML from XML. XSLT can be used instead of
sublayouts, whenever there is no need for complex logic. However sometimes you need to perform a
little chunk of logic or execute a simple operation in your XSLT. XSL allows you to call some C# / VB
methods from your XSLT.

Note
The xslExtensions methods could also be called directly.

The following are the XSL extensions in the SES core module.

<xslExtensions>

 <extension mode="on"

 type="Sitecore.Ecommerce.Analytics.Components.Xsl.XslExtensions,

 Sitecore.Ecommerce.Analytics"

 namespace="http://www.sitecore.net/ecommerceanalytics" singleInstance="true" />

</xslExtensions>

XSLT Method Name Description

AddToShoppingCart This method is used when a visitor adds a product to
the shopping cart. It triggers the AddToShoppingCart

event.
Parameters:

 ProductCode

 ProductName

 Quantity

 Price

ShoppingCartEmptied This method is used when a visitor decides to empty
the shopping cart. It triggers the
ShoppingCartEmptied event.

Parameters:

 ShoppingCartContent

 ItemsinShoppingCart

ShoppingCartContinueShopping This method is used when a visitor decides to continue
shopping. It triggers the event called
ShoppingCartContinueShopping.

ShoppingCartUpdated This method is used when a visitor decides to update
the shopping cart. It triggers the
ShoppingCartUpdated event.

GoToShoppingCart This method is used when a visitor decides to view the
shopping cart. It triggers the GoToShoppingCart

event.

ShoppingCartItemRemoved This method is used when a visitor decides to remove
an item from a specific product in the shopping cart. It
triggers the ShoppingCartItemRemoved event.

Parameters:

 ProductCode

 ProdcutName

 Amount

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 35 of 46

XSLT Method Name Description

ShoppingCartItemUpdated This method is used when a visitor decides to update a
shopping cart item. It triggers the
ShoppingCartItemUpdated event.

Parameters:

 ProductCode

 ProductName

 Amount

ShoppingCartProductRemoved This method is used when a visitor decides to remove a
product from the shopping cart. It triggers the
ShoppingCartProductRemoved event.

Parameters:

 ProductCode

 ProductName

 Amount

ShoppingCartViewed This method is used when a visitor decides to view
shopping cart. It triggers the ShoppingCartViewed

event.

GoToCheckOut This method is used when a visitor decides to
checkout. It triggers the GoToCheckOut event.

CheckoutDeliveryNext This method is used when the visitor clicks Next on the
delivery page in the checkout process. It triggers the
CheckoutDeliveryNext event.

Parameters:

 DeliveryAlternativeOption

 NotificationOption

 NotificationText

CheckoutDeliveryOptionSelected This method is used when a visitor selects a checkout
delivery option. It triggers the
CheckoutDeliveryOptionSelected event.

Parameter:

 DeliveryAlternativeOption

CheckoutPaymentMethodSelected This method is used when a visitor selects a checkout
payment method. It triggers the
CheckoutPaymentMethodSelected event.

Parameters:

 OptionTitle

 OptionCode

CheckoutNext This method is used when a visitor clicks Next on any
page in the checkout process. It triggers the
CheckoutNext event.

CheckoutPaymentNext This method is used when a visitor clicks Next on the
payment page in the checkout process. It triggers the
CheckoutPaymentNext event.

CheckoutNotificationOptionSelect

ed

This method is used when a visitor selects a checkout
notification option. It triggers the
CheckoutNotificationOptionSelected event.

Parameter:

 DeliveryNotificationOption

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 36 of 46

XSLT Method Name Description

CheckoutPrevious This method is used when a visitor clicks Previous

during the checkout process. It triggers the

CheckoutPrevious event.

AuthentificationClickedLoginButt

on

This method is used when a visitor clicks the login
button. It triggers the
AuthentificationClickedLoginButton event.

AuthentificationClickedLoginLink This method is used when a visitor clicks the login link.
It triggers the
AuthentificationClickedLoginLink event.

AuthentificationUserLoggedOut This method is used when a visitor logs out. It triggers
the AuthentificationUserLoggedOut event.

Parameter:

 UserName

AuthentificationUserLoginSucceed

ed

This method is used when a visitor logs in successfully.
It triggers the
AuthentificationUserLoginSucceeded event.
Parameter:

 UserName

AuthentificationUserLoginFailed This method is used when a visitor’s login fails. It
triggers the AuthentificationUserLoginFailed

event.
Parameter:

 UserName

AuthentificationAccountCreationF

ailed

This method is used when a visitor’s attempt to create
an account fails. It triggers the
AuthentificationAccountCreationFailed

event.

AuthentificationAccountCreated This method is used when a visitor creates an account.
It triggers the AuthentificationAccountCreated

event.

NavigationTabSelected This method is used when a visitor clicks a navigation
tab. It triggers the NavigationTabSelected event.

Parameter:

 TabName

NavigationProductReviewed This method is used when a visitor chooses to review a
product. It triggers the
NavigationProductReviewed event.

Parameters:

 Code

 Name

 Title

 Text

 Rate

NavigationFollowListHit This method is used when a visitor hits the follow list. It
triggers the NavigationFollowListHit event.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 37 of 46

XSLT Method Name Description

Search This method is used when a visitor searches for items
on the front end. It enters a record about this search in
the Analytics database.
Parameters:

 Query — the query used for the search.

 Hits — the number of found items.

AddFollowListToQueryString This method is used to return the URL concatenated
with the parameters that are read from the
Ecommerce.Analytics.EventQueryStringKey

setting.
Paramters:

 URL

 ListName

AddFollowHitToQueryString This method is used to call the method named
AddFollowHitToQueryString in the namespace
Sitecore.Analytics.Extensions.AnalyticsPa

geExtensions.

Parameters:

 URL

 Search

AddTriggerEventStringToQueryStri

ng

This method is used when a visitor clicks a link. It adds
the trigger event — EventName parameter — to the

query string.
Parameters:

 URL — the link that the user selects.

 EventName — the trigger event name to be

added to the query string.

GetVirtualProductUrlWithAnalitic

sQueryString

This method is used when a visitor gets a virtual

product’s URL with an Analytics query parameter. It

triggers the

GetVirtualProductUrlWithAnaliticsQueryStr

ing event.

Parameters:

 FolderNi

 ProductNi

GetVirtualProductUrlWithAnalitic

sQueryString

This method is used when a visitor gets a virtual
product’s URL using an Analytics query. It triggers the
GetVirtualProductUrlWithAnaliticsQueryStr

ing event.

Parameter:

 ProsductItem

GetItem This method is used when a visitor user gets an item. It
triggers the GetItem event.

Prameter:

 Iterator

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 38 of 46

4.5 Settings

This section lists the miscellaneous value pair settings in SES.

The following snippet presents these miscellaneous settings that can be configured in the
Sitecore.Ecommerce.config file:

<settings>

 <!-- Ecommerce.Product.BaseTemplateId-->

 <setting name="Ecommerce.Product.BaseTemplateId" value="{02870C17-4273-4242-

 89A4-E973C3CF8EC0}" />

 <!-- Ecommerce.Order.OrderItemTempalteID-->

 <setting name="Ecommerce.Order.OrderItemTempalteId" value="{2769D69F-E217-4C0A-

 A41F-2083EC165218}" />

 <!-- Ecommerce.Order.OrderLineItemTempalteID-->

 <setting name="Ecommerce.Order.OrderLineItemTempalteId" value="{9A0E680B-B84E-

 42F6-9E48-68878591705B}" />

 <!-- Ecommerce.Settings.SettingsRootTemplateId-->

 <setting name="Ecommerce.Settings.SettingsRootTemplateId" value="{AC4841C3-9B0E-

 4AFD-B14B-5F280E34FBD5}" />

 <!-- Ecommerce.Analytics.EventQueryStringKey-->

 <setting name="Ecommerce.Analytics.EventQueryStringKey" value="ec_trk" />

 <!-- Ecommerce.EnableStructuredDataModule-->

 <setting name="Ecommerce.EnableStructuredDataModule" value="true" />

 <!-- Query.MaxItems specifies the max number of items in a query result set.

 If the number is 0, all items are returned. This may affect system

 performance, if a large query result is returned. This also controls the

 number of items in Lookup, Multilist and Valuelookup fields.

 Default value: 100-->

 <setting name="Query.MaxItems" value="0" />

 <!-- Orders.OpenInNewWindow specifies whether a new content editor window must

 be open when editing orders-->

 <setting name="Orders.OpenInNewWindow" value="false"/>

 <setting name="GridPageSize">

 <patch:attribute name="value">10</patch:attribute>

 </setting>

</settings>

The following table describes the <Settings> elements in the SES core.

Setting Description

Ecommerce.Product.BaseTemplate

Id

Defines the ID of the product base template used in the
domain model.

Ecommerce.Order.OrderItemTempa

lteId

Defines the ID of the order item template used in the
domain model.

Ecommerce.Order.OrderLineItemT

empalteId

Defines the ID of the order line item template used in the
domain model.

Ecommerce.Settings.SettingsRoo

tTemplateId

Defines the ID in Sitecore for the settings root template
used in the domain model.

Ecommerce.Analytics.EventQuery

StringKey

Defines the variable that is assigned to a string that
represents a query.

Ecommerce.EnableStructuredData

Module

This setting is checked within the OnItemSaved method.
If this setting is set true, the system puts the saved item
according to the unified tree structure in Sitecore.

Query.MaxItems Specifies the maximum number of items that should be
shown in the results of a query. If the value is 0, all the
items are returned. This may affect system performance,
if a large query result is returned. This also controls the
number of items in Lookup, Multilist and Valuelookup
fields. The default value is 100.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 39 of 46

Setting Description

Orders.OpenInNewWindow Specifies whether a new Content Editor window should
open when you edit orders.

GridPageSize Defines the number of rows in a user interface grid.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 40 of 46

4.6 Pipelines

Two groups of pipelines exist in the Sitecore.Ecommerce.config file:

 The first group is defined within the /configuration/sitecore/pipelines element.

 The second group is defined within the /configuration/sitecore/processors

element.

4.6.1 The <pipelines> Element

These are the pipelines that are grouped within the /configuration/sitecore/pipelines

element. They define system processes.

<pipelines>

 <initialize>

 <!-- Processor initialize the Unity container configuration on the first

 start. -->

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.ConfigureEntities,

 Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Pipelines.Loader.

 EnsureAnonymousUsers, Sitecore.Kernel']">

 <UnityConfigSource>/App_Config/Unity.config</UnityConfigSource>

 </processor>

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.

 RegisterEcommerceProviders,

 Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.

 ConfigureEntities, Sitecore.Ecommerce.Kernel']"

 method="InitializePaymentSystemProvider"/>

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.

 RegisterEcommerceProviders, Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.

 ConfigureEntities, Sitecore.Ecommerce.Kernel']"

 method="InitializeShippingSystemProvider"/>

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.

 RegisterEcommerceProviders, Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.

 ConfigureEntities, Sitecore.Ecommerce.Kernel']"

 method="InitializeNotificationOptionProvider"/>

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.

 RegisterEcommerceProviders, Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.

 ConfigureEntities, Sitecore.Ecommerce.Kernel']"

 method="InitializeCountryProvider"/>

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.

 RegisterEcommerceProviders, Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.

 ConfigureEntities, Sitecore.Ecommerce.Kernel']"

 method="InitializeCurrencyProvider"/>

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.

 RegisterEcommerceProviders, Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.

 ConfigureEntities, Sitecore.Ecommerce.Kernel']"

 method="InitializeVatRegionProvider"/>

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.

 RegisterEcommerceProviders, Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.

 ConfigureEntities, Sitecore.Ecommerce.Kernel']"

 method="InitializeOrderStatusProvider"/>

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.

 RegisterEcommerceProviders, Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.

 ConfigureEntities, Sitecore.Ecommerce.Kernel']"

 method="InitializeBusinessCatalogProviders"/>

 </initialize>

 <preprocessRequest>

 <processor type="Sitecore.Pipelines.PreprocessRequest.FilterUrlExtensions,

 Sitecore.Kernel">

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 41 of 46

 <param desc="Allowed extensions (comma separated)">aspx, ashx,

 asmx, svc</param>

 </processor>

 </preprocessRequest>

 <httpRequestBegin>

 <processor patch:after="*[@type='Sitecore.Pipelines.HttpRequest.ItemResolver,

 Sitecore.Kernel']" type="Sitecore.Ecommerce.Pipelines.HttpRequest.

 ProductResolver, Sitecore.Ecommerce.Kernel"/>

 </httpRequestBegin>

 <getConfiguration>

 <processor type="Sitecore.Ecommerce.Pipelines.GetConfiguration.

 GetFromContextSite, Sitecore.Ecommerce.Kernel" />

 <processor type="Sitecore.Ecommerce.Pipelines.GetConfiguration.GetFromWebSite,

 Sitecore.Ecommerce.Kernel" />

 <processor type="Sitecore.Ecommerce.Pipelines.GetConfiguration.

 GetFromLinkManager, Sitecore.Ecommerce.Kernel" />

 <processor type="Sitecore.Ecommerce.Pipelines.GetConfiguration.

 GetFromResolver, Sitecore.Ecommerce.Kernel" />

 </getConfiguration>

 <startTracking>

 <processor patch:after="*[@type='Sitecore.Analytics.Pipelines.StartTracking.

 ProcessQueryString,Sitecore.Analytics']"

 type="Sitecore.Ecommerce.Analytics.Pipelines.StartTracking.

 ProcessQueryString, Sitecore.Ecommerce.Analytics"/>

 </startTracking>

 <orderCreated>

 <processor type="Sitecore.Ecommerce.Pipelines.OrderCreated.SendMailToAdmin,

 Sitecore.Ecommerce.Kernel"/>

 <processor type="Sitecore.Ecommerce.Pipelines.OrderCreated.SendMailToClient,

 Sitecore.Ecommerce.Kernel"/>

 </orderCreated>

 <customerCreated>

 <processor type="Sitecore.Ecommerce.Pipelines.CustomerCreated.

 ConfigureSecurity, Sitecore.Ecommerce.Kernel"/>

 <processor type="Sitecore.Ecommerce.Pipelines.CustomerCreated.LogIn,

 Sitecore.Ecommerce.Kernel"/>

 <processor type="Sitecore.Ecommerce.Pipelines.CustomerCreated.

 SendNotification, Sitecore.Ecommerce.Kernel"/>

 </customerCreated>

 <paymentStarted>

 <processor type="Sitecore.Ecommerce.Pipelines.PaymentStarted.StartPayment,

 Sitecore.Ecommerce.Kernel"/>

 </paymentStarted>

 <renderLayout>

 <processor type="Sitecore.Pipelines.RenderLayout.InsertRenderings,

 Sitecore.Kernel">

 <patch:attribute name="type">Sitecore.Ecommerce.Pipelines.RenderLayout.

 ProcessProductPresentation, Sitecore.Ecommerce.Kernel

 </patch:attribute>

 </processor>

 </renderLayout>

 <getContentEditorFields>

 <processor type="Sitecore.Shell.Applications.ContentEditor.Pipelines.

 GetContentEditorFields.GetFields, Sitecore.Client" >

 <patch:attribute name="type">Sitecore.Ecommerce.Shell.Applications.

 ContentEditor.Pipelines.GetContentEditorFields.GetFields,

 Sitecore.Ecommerce.Shell

 </patch:attribute>

 <HiddenFields>{81AD5AA7-316C-4F79-9DFF-8FEBFCFBFB4E}|{4423D09D-E95A-4827-

 B12D-E682BE2DE834}|{39BB71D9-E6B4-4F50-BFAC-1C586724D3B9}|

 {4200DA93-E824-4FA0-B93B-5F9AB662E3DC}

 </HiddenFields>

 </processor>

 </getContentEditorFields>

</pipelines>

<initialize>

This pipeline initializes the Sitecore application.

The processor methods that start with initialize:

 Instantiate an instance of the provider.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 42 of 46

 Create a name-value collection for this instance with the following attributes:

o description

o settings name

o default container name

o containers item template ID

 Register this provider instance.

Processor Method Processor Type Description

Process — Default
method

Sitecore.Ecommerce.Pipeline

s.Loader.ConfigureEntities,

Sitecore.Ecommerce.Kernel

This is the default method for this
pipeline. It initializes the
Unity.config.

InitializePaymentSy

stemProvider

Sitecore.Ecommerce.Pipeline

s.Loader.RegisterEcommerceP

roviders,

Sitecore.Ecommerce.Kernel

Initializes the payment system
provider.

InitializeShippingS

ystemProvider

Sitecore.Ecommerce.Pipeline

s.Loader.RegisterEcommerceP

roviders,

Sitecore.Ecommerce.Kernel

Initializes the shipping system
provider.

InitializeNotificat

ionOptionProvider

Sitecore.Ecommerce.Pipeline

s.CustomerCreated.SendNotif

ication,

Sitecore.Ecommerce.Kernel

Initializes the notification option
provider.

InitializeCountryPr

ovider

Sitecore.Ecommerce.Pipeline

s.Loader.RegisterEcommerceP

roviders,

Sitecore.Ecommerce.Kernel

Initializes the country provider.

InitializeCurrencyP

rovider

Sitecore.Ecommerce.Pipeline

s.Loader.RegisterEcommerceP

roviders,

Sitecore.Ecommerce.Kernel

Initializes the currency provider.

InitializeVatRegion

Provider

Sitecore.Ecommerce.Pipeline

s.Loader.RegisterEcommerceP

roviders,

Sitecore.Ecommerce.Kernel

Initializes the VAT region
provider.

InitializeOrderStat

usProvider

Sitecore.Ecommerce.Pipeline

s.Loader.RegisterEcommerceP

roviders,

Sitecore.Ecommerce.Kernel

Initializes the order status
provider.

InitializeBusinessC

atalogProviders

Sitecore.Ecommerce.Pipeline

s.Loader.RegisterEcommerceP

roviders,

Sitecore.Ecommerce.Kernel

Initializes the business catalog
provider.

<preprocessRequest>

This pipeline is invoked for each HTTP request managed by ASP.Net, but aborted for some requests.
It is more common to use the <httpRequestBegin> pipeline for request processing logic, but the

preprocessRequest pipeline is mentioned because a processor within this pipeline may prevent

Sitecore from processing requests with specific extensions other than .aspx.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 43 of 46

Processor
Method

Processor Type Description

Process —

Default
method

Sitecore.Pipelines.PreprocessRequest.Fi

lterUrlExtensions, Sitecore.Kernel

This is the default pipeline
that Sitecore uses to
support different web pages
extensions. SES uses this
to present virtual products
with an extension.

<httpRequestBegin>

This pipeline defines the context of Sitecore. It is invoked for each HTTP request that is not directed to
ASP.NET by the preprocessRequest pipeline.

Processor
Method

Processor Type Description

Process –

Default
method

Sitecore.Ecommerce.Pipelines.HttpReques

t.ProductResolver,

Sitecore.Ecommerce.Kernel

This processor contains the
implemented logic for
resolving a product by its
URL. See the section SES
Product Management.

<getConfiguration>

This pipeline is executed when Sitecore initializes the basic SES components configured in Unity.

Processor
Method

Processor Type Description

Process —

Default
method

Sitecore.Ecommerce.Pipelines.GetConfigu

ration.GetFromContextSite,

Sitecore.Ecommerce.Kernel

Uses the context item to
search for the site settings.

Process —

Default
method

Sitecore.Ecommerce.Pipelines.GetConfigu

ration.GetFromWebSite,

Sitecore.Ecommerce.Kernel

Uses the context item to
search for the site settings
trying to resolve a website

Process —

Default
method

Sitecore.Ecommerce.Pipelines.GetConfigu

ration.GetFromLinkManager,

Sitecore.Ecommerce.Kernel

Uses the Link database to
Search for the site settings

Process —

Default
method

Sitecore.Ecommerce.Pipelines.GetConfigu

ration.GetFromResolver,

Sitecore.Ecommerce.Kernel

Resolves the configuration
in the Unity configuration
file.

<startTracking>

Processor
Method

Processor Type Description

Process —

Default
method

Sitecore.Ecommerce.Analytics.Pipelines.

StartTracking.ProcessQueryString,

Sitecore.Ecommerce.Analytics

This processor is used to
trigger the FollowList,

and the FollowHit events.

<orderCreated>

This pipeline is executed after an order has been created by the Webshop. Currently, it contains two
processors that are responsible for sending out confirmation emails to the customers and the

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 44 of 46

Webshop owner.

Processor
Method

Processor Type Description

Process —

Default
method

Sitecore.Ecommerce.Pipelines.Order

Created.SendMailToAdmin,

Sitecore.Ecommerce.Kernel

Sends an e-mail to the
administrator.

Process —

Default
method

Sitecore.Ecommerce.Pipelines.Order

Created.SendMailToClient,

Sitecore.Ecommerce.Kernel

Sends an e-mail to the customer.

<customerCreated>

This pipeline is executed after a visitor creates a new account on the webshop.

Processor
Method

Processor Type Description

Process —

Default
method

Sitecore.Ecommerce.Pipelines.Custo

merCreated.ConfigureSecurity,

Sitecore.Ecommerce.Kernel

Configures the visitor’s security
settings.

Process —

Default
method

Sitecore.Ecommerce.Pipelines.Custo

merCreated.LogIn,

Sitecore.Ecommerce.Kernel

Logs a customer in to the website.

Process —

Default
method

Sitecore.Ecommerce.Pipelines.Custo

merCreated.SendNotification,

Sitecore.Ecommerce.Kernel

Sends notification to the customer.

<paymentStarted>

This pipeline starts during the checkout process after a visitor clicks Confirm as part of the Payment
step. The processor calls the selected Payment provider.

Processor
Method

Processor Type Description

Process —

Default
method

Sitecore.Ecommerce.Pipelines.Payme

ntStarted.StartPayment,

Sitecore.Ecommerce.Kernel

Invokes the capture method on the
payment provider interface.

<renderLayout>

This pipeline is used by the CMS layout engine to resolve the layout, sub-layout, XSLT and web
controls to render the current page based on the given URL.

Processor
Method

Processor Type Description

Process —

Default
method

Sitecore.Pipelines.RenderLayout.In

sertRenderings, Sitecore.Kernel

Renders the layout that is defined in
Product Detail Presentation
Storage field.

<getContentEditorFields>

This pipeline defines the fields to display in the Content Editor.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 45 of 46

4.6.2 The <Processors> Element

These are the pipelines that are grouped within the /configuration/sitecore/processors

element. These pipelines operate for UI requests and interact with the user.

<processors>

 <uiDeleteItems>

 <processor mode="on" type="Sitecore.Ecommerce.Orders.OrderItemEventHandler,

 Sitecore.Ecommerce.Kernel"

 patch:before="processor[@type='Sitecore.Shell.Framework.Pipelines.

 DeleteItems,Sitecore.Kernel' and @method='Execute']"

 method="OnItemDeleted" />

 </uiDeleteItems>

 <saveUI>

 <processor mode="on" type="Sitecore.Ecommerce.Orders.OrderItemEventHandler,

 Sitecore.Ecommerce.Kernel" patch:after="processor[@type=

 'Sitecore.Pipelines.Save.Save, Sitecore.Kernel']"

 method="OnItemSaved"/>

 </saveUI>

 <uiDuplicateItem>

 <processor mode="on" type="Sitecore.Ecommerce.Orders.OrderItemEventHandler,
 Sitecore.Ecommerce.Kernel" patch:after="processor[@type='Sitecore.

 Shell.Framework.Pipelines.DuplicateItem, Sitecore.Kernel'

 and @method='Execute']" method="OnItemDuplicated"/>

 </uiDuplicateItem>

 <uiCopyItems>

 <processor mode="on" type="Sitecore.Ecommerce.Orders.OrderItemEventHandler,

 Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Shell.Framework.

 Pipelines.CopyItems,Sitecore.Kernel' and @method='Execute']"

 method="OnItemCopied" />

 </uiCopyItems>

 </processors>

The following table describes the pipelines in the /configuration/sitecore/processors

element.

Processor Description

<uiDeleteItems> Deletes an item and its descendants.

<saveUI> Saves an item.

<uiDuplicateItem> Duplicates an item.

<uiCopyItems> Copies an item and its descendants.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2012 Sitecore. All rights reserved.

Page 46 of 46

4.7 Search

This is the default configuration of the product catalog.

<search>

 <configuration>

 <indexes>

 <index id="products" type="Sitecore.Search.Index, Sitecore.Kernel">

 <param desc="name">$(id)</param>

 <param desc="folder">__products</param>

 <Analyzer type="Sitecore.Ecommerce.Search.LuceneAnalyzer,

 Sitecore.Ecommerce.Kernel"/>

 <locations hint="list:AddCrawler">

 <master type="Sitecore.Ecommerce.Search.DatabaseCrawler,

 Sitecore.Ecommerce.Kernel">

 <Database>master</Database>

 <Root>{0A702337-81CD-45B9-8A72-EC15D2BE1635}</Root>

 <Tags>master products</Tags>

 </master>

 <web type="Sitecore.Ecommerce.Search.DatabaseCrawler,

 Sitecore.Ecommerce.Kernel">

 <Database>web</Database>

 <Root>{0A702337-81CD-45B9-8A72-EC15D2BE1635}</Root>

 <Tags>web products</Tags>

 </web>

 </locations>

 </index>

 </indexes>

 </configuration>

</search>

Note
If you are not using the default configuration, change the Root identification to refer to your products
repository. See the section Extending the Resolve Strategy.

	Chapter 1 Introduction
	Chapter 2 SES Technical Overview
	2.1 The SES Domain Model
	2.2 Unity Application Block Overview
	2.2.1 The Unity Configuration File
	2.2.2 The initialize Pipeline
	2.2.3 Dependency Injection
	2.2.4 How to Resolve a SES Component
	2.2.5 How to Add an Implementation to the Unity Configuration
	2.2.6 How to Add a Contract to the Unity Configuration
	2.2.7 How to Replace a SES Component
	2.2.8 How to Configure Unity for Multiple Implementations of the Same Contract

	2.3 SES Product Management
	2.3.1 Product URLs and Product Resolution
	How to Specify the Product URL Format

	2.3.2 Product Presentation
	How to Specify a Product Presentation Format
	How to Update a Product Presentation Format
	How to Define a New Product Presentation Format

	Chapter 3 Adding Customized Product Search Criteria
	3.1 The Need for Product Search Configuration and Extensibility
	3.2 Extending the Product Search Group Template
	3.3 Extending the Resolve Strategy
	Extending the DatabaseCrawler
	Extending the ICatalogProductResolveStrategy Class
	Configuring SES and Lucene

	3.4 Extending the Product Search Catalog
	Extending the CatalogQueryBuilder
	Creating a Products Source
	Defining a New Editor in the Core Database
	Creating a Product Catalog

	Chapter 4 SES Core Configuration
	4.1 Configuration
	4.2 Commands
	4.3 Events
	4.4 XSLExtensions
	4.5 Settings
	4.6 Pipelines
	4.6.1 The <pipelines> Element
	<initialize>
	<preprocessRequest>
	<httpRequestBegin>
	<getConfiguration>
	<startTracking>
	<orderCreated>
	<customerCreated>
	<paymentStarted>
	<renderLayout>
	<getContentEditorFields>

	4.6.2 The <Processors> Element

	4.7 Search

