
Sitecore E-Commerce Services 1.2
The Sitecore E-Commerce API Reference Guide Rev: 28 November 2011

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Sitecore E-Commerce Services 1.2

The Sitecore E-Commerce
API Reference Guide
A reference guide for the Sitecore E-Commerce API

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 2 of 61

Table of Contents

Chapter 1 Introduction .. 4
1.1 Glossary ... 5

Chapter 2 The Sitecore E-Commerce Services API... 6
2.1 The SES Configuration Components .. 8

2.1.1 Configuration Contracts .. 9
2.2 The SES Customer Components .. 12

2.2.1 The Customer Contracts ... 13
2.3 The SES Product Components ... 15

2.3.1 The Product Contracts .. 16
2.4 Product Information Management ... 19

2.4.1 Using Product Factory to Create a Product Instance ... 19
Contract and Implementation .. 19
Creating a New Product Class... 19
Registering New Product Classes in Unity ... 20
Instantiating a Product .. 20

2.4.2 Using Product Specification to Extend Products .. 21
Creating Product Templates with Specifications .. 21
Creating a Product .. 21
Populating Product Data ... 21
Saving a Product ... 22
Reading Product Data ... 22

2.4.3 Entity Mappers ... 22
Default Mappers Implementation ... 22
Entity Member Converters ... 23
Creating a New Converter ... 23
Resolving a Converter ... 23
Default Implementation ... 23
Convertible Entity Member Converter .. 24
BooleanEntityMemberConverter and DateTimeEntityMemberConverter 24
ProductSpecificationEntityMemberConverter ... 24
Field-Based Entity Member Converter ... 24
How to Create Custom Entity Class ... 24

2.4.4 Product Repository ... 25
How to Create Product in a Category .. 25

2.5 The SES Product Catalog Components .. 27
2.5.1 The Product Catalog Contract... 27

2.6 The SES Order Components .. 29
2.6.1 The Order Contracts ... 30
2.6.2 Implementing the Order Contract .. 31
2.6.3 Overriding an OrderStatus Implementation ... 31
2.6.4 Implementing a New Order Status .. 32
2.6.5 Assigning an Order Status .. 33
2.6.6 Integrating an Order Management System .. 33
2.6.7 Extending the OrderLine ... 34
2.6.8 Extending the OrderLine Data Template ... 34
2.6.9 Extending the OrderManager .. 34
2.6.10 Extending the OrderLineMappingRule... 37

2.7 The SES Product Stock Components ... 39
2.7.1 The Product Stock Contracts .. 39

2.8 The SES Shipping Components ... 41
2.8.1 The Shipping Contract .. 41

2.9 The SES Shopping Cart Components ... 42
2.9.1 The Shopping Cart Contracts ... 42
2.9.2 Extending the ShoppingCartLine .. 43

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 3 of 61

2.9.3 Extending the ShoppingCartManager ... 43
2.10 The SES Pricing Components .. 46

2.10.1 The Pricing Contracts ... 47
2.10.2 Adding a Price Type to the Default IProductPriceManager Implementation................ 49

2.11 The SES Payment Providers Components ... 50
2.11.1 The Payment Providers Contracts... 51

2.12 The SES Content-to-Object Mapping Components ... 53
2.12.1 The Content-to-Object Mapping Contracts .. 53

2.13 The SES Search Provider Components .. 55
2.13.1 The Search Provider Contracts ... 55

2.14 The SES Analytics Component ... 56
2.14.1 The Analytics Contract .. 56

2.15 The SES Product Resolver Components .. 57
2.15.1 The Product Resolver Contracts ... 57
2.15.2 Adding a ProductUrlProcessor Implementation ... 58

2.16 Miscellaneous SES Components .. 60
2.16.1 Miscellaneous Contracts ... 60

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 4 of 61

Chapter 1

Introduction

This guide describes the Sitecore E-Commerce Services (SES) API and some useful
extensions to its functionality.

It is useful for developers who are looking for information about the SES API. It gives
the reader a description for the contract/class functionality, parent classes,
implementation, important methods/properties and some sample code.

This document contains the following chapters:

 Chapter 1 — Introduction
This chapter is an introduction to the guide.

 Chapter 2 — The Sitecore E-Commerce Services API
This chapter is an API reference.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 5 of 61

1.1 Glossary

This section defines some of the terms used in this guide.

Component

A package or a module that encapsulates a set of contracts and implementations or related
functionalities or data.

Contract

An interface or an abstract class.

Implementation

A class that implements a contract

Object

An instance of a class.

Unity

A lightweight, extensible dependency injection container.

It facilitates building loosely coupled applications and provides developers with the following
advantages:

 Simplified creation of objects, especially for hierarchical object structures and dependencies.

 Abstraction of requirements; this allows developers to specify dependencies at run time or in
configuration and simplify management of crosscutting concerns.

 Increased flexibility by deferring component configuration to the container.

 Service location capability, which allows clients to store or cache the container.

 Instance and type interception.

For more information about the Unity Application Block, see http://unity.codeplex.com/,
http://msdn.microsoft.com/en-us/library/ff663144.aspx and the SES Developer’s cookbook
where the Unity configuration is explained in more detail.

http://unity.codeplex.com/
http://msdn.microsoft.com/en-us/library/ff663144.aspx

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 6 of 61

Chapter 2

The Sitecore E-Commerce Services API

This chapter describes the SES contracts that constitute the SES API.

SES uses Unity which has a component-based architecture to configure a number of
contracts that exist in assemblies that match their namespaces. The
Sitecore.Ecommerce.DomainModel.dll is the assembly that contains the

contracts and The Sitecore.Ecommerce.Kernel.dll assembly that contains the

default implementations.

Each section in this chapter represents a component in SES. In each section, there
are class diagrams to show the contracts and corresponding default implementations
of each of the components, tables to describe each contract’s functionality,
implementation and sometimes sample code snippets.

There is also a section that describes the webshop site settings.

This chapter contains the following sections:

 The SES Configuration Components

 The SES Customer Components

 The SES Product Components

 Product Information Management

 The SES Product Catalog Components

 The SES Order Components

 The SES Product Stock Components

 The SES Shipping Components

 The SES Shopping Cart Components

 The SES Pricing Components

 The SES Payment Providers Components

 The SES Content-to-Object Mapping Components

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 7 of 61

 The SES Search Provider Components

 The SES Analytics Component

 The SES Product Resolver Components

 Miscellaneous SES Components

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 8 of 61

2.1 The SES Configuration Components

The SES configuration contracts and implementation classes describe the various configuration
options that control how a variety of system components work. Some of these classes are about
presentation logic.

This set of components consists of two groups: non-presentation related and presentation related.

Non-Presentation Related Configuration Objects

The following class diagram gives you an overview of the non-presentation related configuration
contracts:

The following class diagram gives you an overview of the implementation classes of the non-
presentation related configuration contracts:

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 9 of 61

Presentation Related Configuration Objects

The following class diagram gives you an overview of the presentation related configuration contracts:

The following class diagram provides an overview of the implementation classes of the presentation
related configuration contracts:

Note

We recommend that you do not modify the DesignSettings, ShoppingCartSettings and

ShoppingCartSpotSettings objects because they are read by the presentation components.

However, you can safely extend them by extending the contract and the implementation and
configuring them in the Unity.config file.

2.1.1 Configuration Contracts

The following table describes each of the configuration related contracts. It presents the contract’s
functionality and default implementation.

It also presents the parent contract that this class implements.

Contract Description

BusinessCatalogSettings The default implementation of the Domain Model uses
this contract —
Sitecore.Ecommerce.DomainModel.Configurati

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 10 of 61

Contract Description

ons.BusinessCatalogSettings — to determine the

root items for various SES business information stores,
such as the product and order stores.

The default implementation of this contract —
Sitecore.Ecommerce.Configurations.Business

CatalogSettings — retrieves field values from the

Site Settings/Business Catalog item of the current site —

(<home>/Site Settings/Business Catalog).

Note
You can change the Site settings location by changing the
following attribute value in the site registration.

EcommerceSiteSettings="/Site Settings"

See the example site registration in the
Sitecore.Ecommerce.Examples.config file.

DesignSettings Sitecore.Ecommerce.DomainModel.Configurati

ons.DesignSettings exposes the layout and

presentation configuration settings for the presentation
components on the managed websites.

The default implementation of this contract —
Sitecore.Ecommerce.Configurations.DesignSe

ttings — retrieves field values from the Site

Settings/Design Settings of the current site —

(<home>/Site Settings/Design Settings).

GeneralSettings Sitecore.Ecommerce.DomainModel.Configurati

ons.GeneralSettings exposes the global

configuration settings.

The default implementation of this contract —
Sitecore.Ecommerce.Configurations.GeneralS

ettings — retrieves field values from the Site

Settings/General item of the current site —

(<home>/Site Settings/General).

ShoppingCartSettings Sitecore.Ecommerce.DomainModel.Configurati

ons.ShoppingCartSettings exposes the

configuration settings for individual shopping carts.

The default implementation of this contract —
Sitecore.Ecommerce.Configurations.Shopping

CartSettings — manages information in the Site

Settings/Shopping Cart item of the current site —

(<home>/Site Settings/Shopping Cart).

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 11 of 61

Contract Description

ShoppingCartSpotSettings Sitecore.Ecommerce.DomainModel.Configurati

ons.ShoppingCartSpotSettings exposes the

configuration settings for the presentation components
that display an individual shopping cart.

The default implementation of this contract —
Sitecore.Ecommerce.Configurations.Shopping

CartSpotSettings — accesses the Site
Settings/Shopping Cart Spot item of the current site —

(<home>/Site Settings/Shopping Cart Spot).

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 12 of 61

2.2 The SES Customer Components

The SES Customer model consists of CustomerInfo and ICustomerManager contracts that

provide and manage the customer’s information.

The following class diagram gives you an overview of the Customer contracts:

The default implementations of the Customer related contracts are using the Sitecore ASP.NET
membership provider. The setting that indicates, which security roles the users should be members
of, is configured by the DefaultCustomerRoles property of the GeneralSettings class, see the

section Configuration Contracts.

SES creates users in the site context domain with the default implementation.

Note
The domain can be specified at the site definition in the Web.config file. If the roles specified in

setting DefaultCustomerRoles are not in that domain, then the users will not be added to the roles

and a log entry will be created.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 13 of 61

The following class diagram gives you an overview of the customer implementation:

2.2.1 The Customer Contracts

The following table describes each of the customer related contracts. It presents the contract’s
functionality and default implementation. It also presents the parent contract that this class
implements.

Contract Description

CustomerInfo Sitecore.Ecommerce.DomainModel.Users.CustomerInfo

exposes information about a customer.

The default implementation of this contract —
Sitecore.Ecommerce.Users.CustomerInfo — provides basic

customer information.

ICustomerManager Sitecore.Ecommerce.DomainModel.Users.CustomerManage

r defines a programming interface for managing information about

customers.

The default implementation of this contract —
Sitecore.Ecommerce.Users.CustomerManager — manages

customer information in the Sitecore ASP.NET membership
database.

A pipeline called CustomerCreated can be modified or extended

to add custom logic. This pipeline is in located in the

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 14 of 61

Contract Description

Sitecore.Ecommerce.config file.
<customerCreated>
 <processor

type="Sitecore.Ecommerce.Pipelines.CustomerCreated.ConfigureSecurity,
Sitecore.Ecommerce.Kernel"/>

 <processor
type="Sitecore.Ecommerce.Pipelines.CustomerCreated.LogIn,
Sitecore.Ecommerce.Kernel"/>

 <processor
type="Sitecore.Ecommerce.Pipelines.CustomerCreated.SendNotification,
Sitecore.Ecommerce.Kernel"/>

 </customerCreated>

As a default setting, all the roles defined in the general setting
“DefaultCustomerRoles” are added to the user’s membership.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 15 of 61

2.3 The SES Product Components

The following class diagram gives you an overview of the product contracts:

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 16 of 61

The following class diagram gives you an overview of the product implementation:

2.3.1 The Product Contracts

The following table describes each of the product related contracts. It presents the contract’s
functionality and default implementation. It also presents the parent contract that this class
implements.

Contract Description

IProductRepository Sitecore.Ecommerce.DomainModel.Products.IProduc

tRepository defines a programming interface for managing a

product catalog.

The default implementation of this contract —
Sitecore.Ecommerce.Products.ProductRepository —
manages the descendants of the item specified in the Business
Catalog item in the Products Link field of the current site —

(<home>/Site Settings/Business Catalog).

Examples:
// Reading default product data

publ1ic void

ShouldReadDefaultProductData(IProductRepository repository)

 {

 ProductBaseData productBase =

repository.Get<ProductBaseData>("1002");

 Product product = productBase as Product;

 Assert.IsNotNull(product);

 }

// Reading custom product data

public void

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 17 of 61

Contract Description

ShouldReadCustomProductData(IProductRepository repository)

 {

 SlrCamera product =

repository.Get<SlrCamera>("1002");

string Exposure =

product.Specifications[“Exposure”];

 }

IProductRepositoryIt

em

Sitecore.Ecommerce.DomainModel.Products.IProduc

tRepositoryItem represents any item in a product repository,

such as a product or a product category. All the items in a
product repository implement this contract.

For more information about product repositories, see the SES
IProductRepository contract.

For more information about products, see the SES
ProductBaseData contract.

The default implementations of this contract include the
ProductBaseData and the ProductCategory contracts.

ProductBaseData Sitecore.Ecommerce.DomainModel.Products.Product

BaseData implements the IProductRepositoryItem and

the ITemplatedEntity interfaces. This contract presents

essential information about a product:

 Code

 EAN which stands for the European Article Number

 SKU which stands for the Stock-Keeping Unit.

 Title

This contract has a corresponding CMS template. This template
is registered in the Sitecore.Ecommerce.Config file

 <setting

name="Ecommerce.Product.BaseTemplateId" value="{02870C17-

4273-4242-89A4-E973C3CF8EC0}" />

Note
You should not replace or overwrite the ProductBaseData

contract and template. Instead create a custom product class
and inherit from it.

The default implementation of this contract —
Sitecore.Ecommerce.Products.Product — presents

common information about a product, such as the product name
and the product description.

ProductCategory Sitecore.Ecommerce.DomainModel.Products.Product

Category implements the IProductRepositoryItem

interface and represents a category of products.

The default implementation of this contract —
Sitecore.Ecommerce.Products.ProductCategory —

represents basic information about a product category, such as
the product category name and the product category code.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 18 of 61

Contract Description

ProductLine

Sitecore.Ecommerce.DomainModel.Products.Product

Line represents information about a specific product in a

business entity, such as the quantity of a product that is in a
shopping cart or order.

The default implementations of this contract include the
OrderLine contract and the ShoppingCartLine contract.

ProductSpecification

Sitecore.Ecommerce.DomainModel.Products.

ProductSpecification presents product specifications in a

dictionary-like format. It contains a list of key-value pairs which
describes each item in the specifications collection.

For example:

 The specification for the SLR camera has the fields:
“Effective Pixels” and “Image Sensor”.

 The specification for the Lenses has the fields: “Focal
Length”, “Maximum Aperture” and “Minimum Aperture”.

For more information, see the section Using Product
Specification to Extend Products.

ProductFactory Sitecore.Ecommerce.DomainModel.Products.Product

Factory is used for product instance creation. The Create

method receives product template ID and returns a new product
instance based on the ProductBaseData contract.

The default implementation of this contract is
Sitecore.Ecommerce.Products.ItemProductFactory.

The default product factory does two things:

1. It returns a product instance. It resolves the product

from Unity.config file using the template parameter

of the Create method. In Unity the mapping between

the template ID and the product class is configured like
the following example, where the name attribute
contains the template ID:

<register type="ProductBaseData"

mapTo="SlrCameraProduct" name="{B072B7C7-6F3F-4316-

B8D7-010629AEBEF1}"/>

2. It populates the ProductSpecification collection.

For more information, see the section Using Product
Specification to Extend Products.

Note
Creating a product using a product factory will create the
product instance and not the corresponding product item in the
CMS.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 19 of 61

2.4 Product Information Management

This section describes some product information management improvements.

There are two ways to add custom product information to SES:

 Use the Product Specifications collection for standard fields that contains simple product
specification data. This is the recommended approach if you only need one product class that
handles many specialized product templates in CMS (one – to – many relationship). For this
to work and to be able read the data through the API, all the specification data (fields) must
be located in a template section called Specification.

For more information, see the section Using Product Specification to Extend Products.

 Creating some custom product classes for each specialized product template. This is the
recommended approach if you need to add fields to product templates which are not located
in a template section named Specification. In this case, you must create a custom product
class to be able to read the data through the API.

For more information, see the section Creating a New Product Class.

2.4.1 Using Product Factory to Create a Product Instance

The Product Factory component is used to construct instances of products classes.

Contract and Implementation

The Product Factory located in the Sitecore.Ecommerce.DomainModel.Products namespace

and has one method Create, which takes a string parameter template and returns a product class

instance based on the ProductBaseData contract.

Example:

public abstract ProductBaseData Create(string template);

The default implementation of the factory is the
Sitecore.Ecommerce.Products.ItemProductFactory class that is located in

Sitecore.Ecommerce.Kernel.dll assembly. In the default implementation, the parameter

template is assumed to be a product template ID.

Creating a New Product Class

If you want to implement your own product class you can inherit from either:
Sitecore.Ecommerce.DomainModel.Products.ProductBaseData class or

Sitecore.Ecommerce.Products.Product class.

The base class for all the products is ProductBaseData from the DomainModel namespace. There

is a default product implementation located in the Kernel project which has some additional properties
such as Description and Brand. If you want to use your custom products along with the Example
Pages you must inherit from the Product template and class. If not, you must create a custom

template and inherit from ProductBaseData.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 20 of 61

Registering New Product Classes in Unity

The Product Factory instantiates product classes using Unity IoCContainer. By default,

ProductBaseData is mapped to the Product class:

Example:

<alias alias="ProductBaseData"

type="Sitecore.Ecommerce.DomainModel.Products.ProductBaseData,

Sitecore.Ecommerce.DomainModel"/>

<alias alias="SitecoreProduct" type="Sitecore.Ecommerce.Products.Product,

Sitecore.Ecommerce.Kernel"/>

<container>

 <register type="ProductBaseData" mapTo="SitecoreProduct"/>

</container>

You must register the new product classes in Unity giving it the template ID to map to.

The following snippet shows you how to register it.

Example:

<alias alias="FlashProduct" type="Sitecore.Ecommerce.Examples.Products.Flash,

Sitecore.Ecommerce.Custom"/>

<alias alias="LenseProduct" type="Sitecore.Ecommerce.Examples.Products.Lense,

Sitecore.Ecommerce.Custom"/>

<alias alias="OtherAccessoryProduct"

type="Sitecore.Ecommerce.Examples.Products.OtherAccessory, Sitecore.Ecommerce.Custom"/>

<alias alias="PsCameraProduct" type="Sitecore.Ecommerce.Examples.Products.PsCamera,

Sitecore.Ecommerce.Custom"/>

<alias alias="SlrCameraProduct" type="Sitecore.Ecommerce.Examples.Products.SlrCamera,

Sitecore.Ecommerce.Custom"/>

<container>

 <register type="ProductBaseData" mapTo="FlashProduct" name="{95681CF6-3635-49EC-

A09A-CC548FA62389}"/>

 <register type="ProductBaseData" mapTo="LenseProduct" name="{8FAC8E12-7459-43F8-

97E8-1BC6840B9226}"/>

 <register type="ProductBaseData" mapTo="OtherAccessoryProduct" name="{A93FA2C4-3AE4-

45C2-8C3F-EFA7E129537E}"/>

 <register type="ProductBaseData" mapTo="PsCameraProduct" name="{7BD2FBC6-061B-40DD-

B1F9-D8603A701624}"/>

 <register type="ProductBaseData" mapTo="SlrCameraProduct" name="{B072B7C7-6F3F-4316-

B8D7-010629AEBEF1}"/>

</container>

Note
The classes are implemented in the Example Pages package.

Instantiating a Product

Example:

ProductFactory factory = Context.Entity.Resolve<ProductFactory>();

const string ShoeTemplate = "<Shoe Template ID>";

ProductBaseData product = factory.Create(ShoeTemplate);

If the template ID is not found in the database, the InvalidOperationException exception is

thrown.

If a product class with a specific template ID is not registered in Unity, using the Name attribute, the

default mapping is used, which is the registration without the Name attribute.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 21 of 61

2.4.2 Using Product Specification to Extend Products

ProductSpecification is a new business entity that is intended to simplify product information

management. It is a dictionary-like entity which allows dynamic storing and reading of key-value pair
data.

The default implementation assumes that the product specifications are stored in a template section
called Specification. The fields located in the template section called Specification in all the
inherited templates are included in the same product Specifications collection. For example, if the
SLRCamera template inherits from the Cameras template and they both contain a template section
called Specification, then key-value pairs based on the fields from both templates are read and

mapped to the ProductSpecification collection on the product class, when the products are

resolved through the API.

Creating Product Templates with Specifications

To extend the product information with new fields:

1. Create a new product template and inherit from a template
/sitecore/templates/Ecommerce/Product/Product.

2. Create a template section called Specification.

3. Add fields to the section that will contain the additional specification data.

Now your product template is ready for use. The following is an example of a specialized Shoe
template that adds two additional fields Color and Size to the template section called Specification.
These fields are then mapped to the Specifications collection of the product instance.

Creating a Product

To create a new product using the SES API:

1. Create a product instance using the Product Factory.

2. Populate the product data along with the key value pairs in the Specifications collection.

3. Save the product using Product Repository — see the section Saving a Product.

Populating Product Data

The default Product Factory implementation uses the Template parameter to read all the
specification fields located in the Specification sections of the product template and the inherited
templates. When the factory creates the product instance, the Specifications collection is populated
with the fields found in the new product instance. In the Shoe example, it will contain two keys: Color
and Size that were read from the Shoe template.

The following snippet shows you how to set data to the product instance.

Example:

product.Code = "1001";

product.Title = "Sandals";

product.Specifications["Color"] = "Black";

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 22 of 61

product.Specifications["Size"] = "36-38";

Any attempts to set collection values for keys that are not part of the templates sections called
Specification and consequently not a part of the Keys in the collection, will result in the exception

KeyNotFoundException.

Example:

product.Specifications["Some invalid key"] = "any value"; // throws

KeyNotFoundException.

Saving a Product

You must use ProductRepository instance to store new products in the CMS.

If you use the Product Factory to create a product instance (see the section Instantiating a Product), it
will just create the object instance and not the corresponding product item in the CMS. To create and
save the product in the CMS, you must call an additional method.

The following snippet shows you how to call it:

IProductRepository repository = Context.Entity.Resolve<IProductRepository>();

repository.Create(product);

Reading Product Data

You must use the product repository to read the product data. The keys-value pairs which are located
in the Specifications collection depend on the fields in the template sections named Specification of
the corresponding product template, as described in the section Populating the Product Data. If the
template has base templates that also contain Specification sections, the keys are aggregated into
the same Specifications collection.

Example:

IProductRepository repository = Context.Entity.Resolve<IProductRepository>();

ProductBaseData camera = repository.Get<ProductBaseData>("1002");

Assert.AreEqual("10.1 million", camera.Specifications["Effective Pixels"]);

ProductBaseData lense = repository.Get<ProductBaseData>("4001");

Assert.AreEqual("105mm (157.5mm when used with Nicam DX format) ",

lense.Specifications["Focal length"]);

ProductBaseData flash = repository.Get<ProductBaseData>("2002");

Assert.AreEqual("25 to 1000 ", flash.Specifications["ISO range in TTL auto flash

mode"]);

2.4.3 Entity Mappers

SES contains a number Entity mappers designed to simplify data mapping between the SES entities
and the CMS items. It is possible to convert primitive and custom types if custom converters are
implemented.

Note
Only Get methods of the default Product Repository uses Entity Mappers.

An Entity Mapper has a simple Map method which gets the source and the target instances. It

analyzes the source type members and creates a list of the Member Converters. It calls each specific
member converter and saves the results to the target object.

Default Mappers Implementation

There are two default Entity Mappers available by default that convert entities to items and vice-versa.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 23 of 61

Example:

<alias alias="EntityToItemMapper"

type="Sitecore.Ecommerce.Data.Mapping.EntityToItemMapper, Sitecore.Ecommerce.Kernel"/>

<alias alias="ItemToEntityMapper"

type="Sitecore.Ecommerce.Data.Mapping.ItemToEntityMapper, Sitecore.Ecommerce.Kernel"/>

<container>

 <register type="EntityMapper[IEntity, Item]" mapTo="EntityToItemMapper"/>

 <register type="EntityMapper[Item, IEntity]" mapTo="ItemToEntityMapper"/>

</container>

Entity Member Converters

The Entity member converters are designed to convert a specific entity member type to a storage
object and vice-versa. The storage object is an item in the default implementation.

Creating a New Converter

All the entity member converters should implement either the
Sitecore.Ecommerce.DomainMode.Data.IEntityMemberConverter interface or inherit from

the Sitecore.Ecommerce.DomainModel.Data.EntityMemberConverter<TEntityMember,

TStorage> class.

The implementation based on the abstract class is recommended. It allows using strongly typed
parameters and avoids type casting.

Resolving a Converter

All the converters must be registered in Unity. The Sitecore.Ecommerce.Data.Mapping.

EntityMemberConverterLookupTable class is responsible for resolving the converters. The

converters are resolved according to the following algorithm:

1. If the entity member has been augmented with the SES specific Entity attribute, the
MemberConverter property of Entity attribute explicitly specifies the exact Converter to use.

The MemberConverter property must contain a name of a Converter specified in Unity and

it will throw an exception, otherwise.

2. If no explicit Entity attribute with the MemberConverter property set is specified for an entity

member, the DataMapper tries to combine the entity member type name with the suffix

EntityMemberConverter. That is the default way that Converters such as

BooleanEntityMemberConverter and DateTimeEntityMemberConverter are

resolved.

3. If the first two steps have not resolved the default converter —
ConvertibleEntityMemberConverter — is used.

Default Implementation

The Entity member Converters are located in the
Sitecore.Ecommerce.Data.Mapping.Converters namespace. Four entity member Converters

are available by default:

 ConvertibleEntityMemberConverter

 BooleanEntityMemberConverter

 DateTimeEntityMemberConverter

 ProductSpecificationEntityMemberConverter

The default entity member converters registered in the Unity.config file:

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 24 of 61

<alias alias="ConvertibleEntityMemberConverter"

type="Sitecore.Ecommerce.Data.Mapping.Converters.ConvertibleEntityMemberConverter,

Sitecore.Ecommerce.Kernel"/>

<alias alias="BooleanEntityMemberConverter"

type="Sitecore.Ecommerce.Data.Mapping.Converters.BooleanEntityMemberConverter,

Sitecore.Ecommerce.Kernel"/>

<alias alias="DateTimeEntityMemberConverter"

type="Sitecore.Ecommerce.Data.Mapping.Converters.DateTimeEntityMemberConverter,

Sitecore.Ecommerce.Kernel"/>

<alias alias="ProductSpecificationEntityMemberConverter"

type="Sitecore.Ecommerce.Data.Mapping.Converters.ProductSpecificationEntityMemberConverter,

Sitecore.Ecommerce.Kernel"/>

<container>

 <register type="IEntityMemberConverter" mapTo="ConvertibleEntityMemberConverter" />

 <register type="IEntityMemberConverter" mapTo="BooleanEntityMemberConverter"

name="BooleanEntityMemberConverter"/>

 <register type="IEntityMemberConverter" mapTo="DateTimeEntityMemberConverter"

name="DateTimeEntityMemberConverter"/>

 <register type="IEntityMemberConverter"

mapTo="ProductSpecificationEntityMemberConverter"

name="ProductSpecificationEntityMemberConverter"/>

</container>

Convertible Entity Member Converter

The ConvertibleEntityMemberConverter is the default entity member converter which is used

to map all the primitive types which implement the System.IConvertible interface.

Note
The convertor does not map Boolean and DateTime values.

BooleanEntityMemberConverter and DateTimeEntityMemberConverter

Sitecore stores Boolean and DateTime values types in a specific format and that is why the types

have their own specific converters.

ProductSpecificationEntityMemberConverter

The product Specifications collection is not a simple property type and therefore has its own
converter. The ProductSpecificationEntityMemberConverter takes care of converting all

the key-value pairs mapped between the collection and the product template. It uses the algorithm for
converting the values that is described in the section Resolving a Converter

Field-Based Entity Member Converter

You must use the
Sitecore.Ecommerce.Data.Mapping.FieldBasedEntityMemberConverter as a base class

for converters that are designed to work with item fields. The class has the StorageObject property

of type Sitecore.Data.Fields.Field and contains the storage field.

How to Create Custom Entity Class

There are some examples of custom products located in the
Sitecore.Ecommerce.Examples.Products namespace of the Sitecore.Ecommerce.Custom

assembly. Here is an example for the SLR Camera:

Example:

namespace Sitecore.Ecommerce.Examples.Products

{

 using Ecommerce.Products;

 // <summary>

 // Defines the SLR camera class.

 // </summary>

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 25 of 61

 public class SlrCamera : Product

 {

 // <summary>

 // Gets or sets the effective pixels.

 // </summary>

 // <value>

 // The effective pixels.

 // </value>

 public string EffectivePixels { get; set; }

 // <summary>

 // Gets or sets the image sensor.

 // </summary>

 // <value>

 // The image sensor.

 // </value>

 public string ImageSensor { get; set; }

 }

}

This class extends the default Product class with two new properties EffectivePixels and

ImageSensors. The properties are mapped to the template fields Effective Pixels and Image

Sensors. Note that item field names contain spaces and can be mapped correctly. This logic for
resolving the field name mapping is implemented in the
Sitecore.Ecommerce.Data.Mapping.FieldNamingPolicy class.

2.4.4 Product Repository

How to Create Product in a Category

This code shows how to create a Binocular product in a given category. There is a test template
Binocular that adds some new specification fields. The example creates a new instance of the default
product class based on the given template ID, specifies some test values, and saves it in the
Binoculars category of the repository.

Example:

namespace SES.Samples

{

 using Sitecore.Ecommerce;

 using Sitecore.Ecommerce.DomainModel.Products;

 public class ProductRepositorySample

 {

 public void HowToCreateProductInCategory()

 {

 // Instantiate Product Repository using Unity IoCContainer.

 IProductRepository repository = Context.Entity.Resolve<IProductRepository>();

 // Get the category from the repository to ensure that it exists.

 ProductCategory binocularsCategory =

repository.Get<ProductCategory>("Binoculars");

 // Create new category if nothing found.

 if (binocularsCategory == null)

 {

 binocularsCategory = Context.Entity.Resolve<ProductCategory>();

 // Specify required product categury parameters such Code and Name.

 // Code is used to find a category in repository.

 // Name is a product item name in default implementation.

 binocularsCategory.Code = "Binoculars";

 binocularsCategory.Name = "Binoculars";

 repository.Create(binocularsCategory);

 }

 // Instantiate Product Factory to create a product instance.

 ProductFactory factory = Context.Entity.Resolve<ProductFactory>();

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 26 of 61

 // Create instance of SLR camera product class.

 const string BinocularTemplateId = "{4703A513-F89A-4F45-96B9-D3CE94A3E43A}";

 ProductBaseData binocular = factory.Create(BinocularTemplateId);

 binocular.Code = "8x42HG L DCF";

 binocular.Name = "8x42HG L DCF";

 // Fill the product specifications.

 binocular.Specifications["Magnification"] = "8";

 binocular.Specifications["Objective diameter"] = "42";

 binocular.Specifications["Angular field of view - Real degree"] = "7.0";

 binocular.Specifications["Angular field of view - Apparent degree"] = "52.1";

 binocular.Specifications["Field of view at 1000m"] = "122";

 binocular.Specifications["Exit pupil"] = "5.3";

 binocular.Specifications["Relative brightness"] = "28.1";

 binocular.Specifications["Eye relief"] = "20.0";

 binocular.Specifications["Close focusing distance"] = "3.0";

 binocular.Specifications["Weight"] = "795";

 binocular.Specifications["Length"] = "157";

 binocular.Specifications["Width"] = "139";

 binocular.Specifications["Interpupillary distance adjustment"] = "56-72";

 // Create new product in the repository and put it into Binoculars category.

 repository.Create<ProductBaseData, ProductCategory>("Binoculars", binocular);

 }

 }

}

The Binocular template is inherited from the
/sitecore/templates/Ecommerce/Product/Product template that is a base for all the

product templates. The following image shows the fields used in the example:

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 27 of 61

2.5 The SES Product Catalog Components

The following class diagram gives you an overview of the product catalog contracts:

The following class diagram gives you an overview of the product catalog implementation:

2.5.1 The Product Catalog Contract

The following table describes each of the product catalog related contract. It presents the contract’s
functionality and default implementation. It also presents the parent contract that this class
implements.

Contract Description

ICatalogProductResol

veStrategy

Sitecore.Ecommerce.DomainModel.Catalogs.ICatalo

gProductResolveStrategy defines the API that should be

used to retrieve specified products from a product repository.
Sitecore provides two default implementations of the
ICatalogProductResolveStrategy contract:

 The Product List product resolution strategy —
Sitecore.Ecommerce.Catalogs.ProductListCa

talogResolveStrategy retrieves one or more items

based on their IDs.

 The Query product resolution strategy —
Sitecore.Ecommerce.Catalogs.QueryCatalogP

roductResolveStrategy returns products that match

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 28 of 61

Contract Description

the search query.

When you create an item that presents a number of products on
a website, you must use one of the
ICatalogProductResolveStrategy implementations to

determine how to specify which products should be displayed.
SES stores the user’s selections as parameters in the fields of
the item, and the presentation components use those fields to
determine which products to display.

The Product Page editor that appears for items based on the
Ecommerce/Product Categories/Product Search

Group data template uses these two

ICatalogProductResolveStrategy implementations. SES

manages the ICatalogProductResolveStrategy definition

items beneath the
Sitecore/System/Modules/Ecommerce/System/Produc

t Selection Method item.

The
Sitecore.Ecommerce.Xsl.XslExtensions.GetProduct

sForCatalog() XSL extension method (should be used with

items based on the Ecommerce/Product

Categories/Product Search Group data template). It

returns a list of the products that were retrieved using the
strategy selected in the current item. To expose this method as
sc:GetProductsForCatalog() in an XSL rendering, add the

following attribute to the /xsl:stylesheet element in the

.xslt file:

xmlns:ec="http://www.sitecore.net/ec"

To return the products on the webpage item, you can configure
the implementations of the
ICatalogProductResolveStrategy contract to search for

specific fields on the webpage in the repository.

http://www.sitecore.net/ec

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 29 of 61

2.6 The SES Order Components

The following class diagram gives you an overview of the order contracts:

The following class diagram gives you an overview of the order implementation:

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 30 of 61

2.6.1 The Order Contracts

The following table describes each of the order related contracts. It presents the contract’s
functionality and default implementation. It also presents the parent contract that this class
implements.

Contract Description

Order Sitecore.Ecommerce.DomainModel.Orders.Order exposes

information about individual orders.

The default implementation of this contract —
Sitecore.Ecommerce.Orders.Order — represents the

descendants of the item specified in the Business Catalog in the
Orders Link field of the current site — (<home>/Site

Settings/Business Catalog).

To integrate an external order management system, you do not need
to implement the Order contract. Instead, implement the

IOrderManager contract to manage orders.

OrderStatus Sitecore.Ecommerce.DomainModel.Orders.OrderStatus

presents the status of an order.

Note
There is a one-to-one mapping between statuses defined in the CMS
content for a webshop and the status types registered in Unity. There
cannot be a status defined in the content without also being registered
in Unity. The OrderStatus contract exposes a method called

Process that executes the business logic whenever the order enters

the state.

Each of the following contract implementations can contain logic to
apply when the system updates the status of an order.

The default OrderStatus implementations include:

 Completed
(Sitecore.Ecommerce.Orders.Statuses.Completed)

 Closed
(Sitecore.Ecommerce.Orders.Statuses.Closed)

 Held (Sitecore.Ecommerce.Orders.Statuses.Held)

 Pending
(Sitecore.Ecommerce.Orders.Statuses.Pending)

 Processing
(Sitecore.Ecommerce.Orders.Statuses.Processing)

 Canceled
(Sitecore.Ecommerce.Orders.Statuses.Canceled)

 New (Sitecore.Ecommerce.Orders.Statuses.New)

 Captured
(Sitecore.Ecommerce.Orders.Statuses.Captured)

OrderLine Sitecore.Ecommerce.DomainModel.Orders.OrderLine

implements the ProductLine class and exposes information about

an order line item on an order.

The default implementation of this contract —
Sitecore.Ecommerce.Orders.OrderLine — represents the

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 31 of 61

Contract Description

descendants of an order item.

IOrderManager Sitecore.Ecommerce.DomainModel.Orders.IOrderManager

defines a programming interface for managing orders.

This contract has two implementations:

 OrderManager in the Kernel — This implementation

accesses the descendants of the item specified in the
Business Catalog in the Orders Link field of the context site

— (<home>/Site Settings/Business Catalog).

Note
This implementation writes order information to the Sitecore
Master database.

 The RemoteOrderManager in the Service model — This

implementation is a service that is used when the content
management and content delivery systems have been
separated.
For more information, see the SES Scaling Guide.

2.6.2 Implementing the Order Contract

To implement the Order contact:

1. In the Visual Studio project, create a class that implements the Order contract—

Sitecore.Ecommerce.DomainModel.Orders.Order— to store information about an

order.

2. In the new class, implement a constructor that accepts an object that implements the
OrderStatus contract.

For more information, see the description of the OrderStatus contract.

3. You can also implement the OrderLine contract.

For more information, see the description of the OrderLine contract.

4. Update the Unity configuration to use your implementation of the new Order implementation.

For more information about updating the Unity configuration, see the section How to Replace
a SES Component in the SES Developer’s Cookbook.

Example:

<alias alias="MyOrder" type="MyNamespace.MyOrder, MyAssembly"/>

...

<register type="Order" mapTo="MyOrder">

...

2.6.3 Overriding an OrderStatus Implementation

The OrderStatus contract exposes a method called Process that executes the business logic

whenever the order reaches the state. For example, you may need to replace the logic executed for
the status Pending.

To override the logic that SES applies when an order reaches an existing order status:

1. In the Visual Studio project, create a class that inherits from the
Sitecore.Ecommerce.Orders.Statuses.OrderStatusBase class or from the class

that provides the default implementation of the order status.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 32 of 61

2. In the new class, implement the Process() method, which may call the Process() method

in the base class.

3. In the Unity configuration, create a new /unity/alias element to register the new

implementation.

For more information about adding an implementation to Unity configuration, see the section
How to Add an Implementation to the Unity Configuration in the SES Developer’s Cookbook.

4. In the Unity configuration, update the /unity/container/register element for the order

status to use your implementation.

For more information about updating Unity configuration, see the section How to Replace a
SES Component in the SES Developer‘s Cookbook.

2.6.4 Implementing a New Order Status

To implement a new order status:

1. In the Visual Studio project, create a class that inherits from the
Sitecore.Ecommerce.Orders.Statuses.OrderStatusBase class.

2. In the new class, implement the Process() method to contain logic for SES to be applied

when placing the order into that status.

3. In the Unity configuration, add a /unity/alias element to register the new implementation.

For more information about adding an implementation to Unity, see the section How to Add
an Implementation to the Unity Configuration in the SES Developer’s Cookbook.

Example:

<alias alias="ShippedOrderStatus" type="MyNamespace.ShippedOrderStatus,

MyAssembly"/>

4. In the Unity configuration, add a /unity/container/register element to define a

mapping for the new implementation. Set the type attribute of the new
/unity/container/register element to OrderStatus. Set the mapTo attribute of the

new /unity/container/register element to the alias attribute of the new

/unity/alias element. Set the name attribute of the /unity/container/register

element to identify the status.

Example:

<register type="OrderStatus" mapTo="ShippedOrderStatus" name="Shipped">

 <interceptor type="VirtualMethodInterceptor"/>

 <policyInjection/>

</register>

5. In the Content Editor, select the item specified in the field named Order Statuses Link in
the System Links section of the child named Business Catalog of the Site Settings child of

the home item of the managed website—<home>/Site Settings/Business Catalog

6. In the Content Editor, insert an order status definition item using the

Ecommerce/Business Catalog/Order Status data template.

7. In the new order status definition item, in the Data section, in the Code field, enter the name

attribute of the new /unity/container/register element in the Unity configuration.

8. In the new order status definition item, in the Data section, in the Title field, enter the label
that should appear in the user interface to transition an order to this status. Enter the same
value for the Name field in the Data section.

9. In the new order status definition item, in the Data section, in the Available List field, select
the order statuses that the user can apply to an order currently associated with this order
status.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 33 of 61

2.6.5 Assigning an Order Status

In order to set an order status value, it needs to be created first. You can use the
Sitecore.Ecommerce.Entity.Resolve() method to resolve an order status. Resolving is a

Unity’s method of creating a new instance of a specific type. The following code snippet shows you
how to assign the Shipped order status to an order:

Example:

using Sitecore.Ecommerce.DomainModel.Orders;

...

IOrderManager<Order> orderManager = Sitecore.Ecommerce.Context.Entity.Resolve

 <IOrderManager<Order>>();

Order order = orderManager.GetOrder("order number");

order.Status = Sitecore.Ecommerce.Context.Entity.Resolve<OrderStatus>("Shipped");

orderManager.SaveOrder(order);

2.6.6 Integrating an Order Management System

To integrate an external order management system:

1. Optionally, implement the Order contract.

For more information about the Order contract, see the section The Order Contracts.

2. In the Visual Studio project, create a class that implements the IOrderManager contract to

abstract the order management system.

3. In the new class, implement the GetOrder() method to retrieve information about an order

from the external order management system, and return an object that implements the Order
contract to contain that information.

4. In the new class, implement the GetOrders() method to retrieve orders matching a given

query from the external order management system.

5. In the new class, implement the CreateOrder() method to create an order in the external

order management system.

6. In the new class, implement the SaveOrder() method to update an order in the external

order management system.

7. In the new class, implement the GenerateOrderNumber() method to generate an order

number appropriate for the external order management system.

8. In the Unity configuration, add an element in /alias/alias for your IOrderManager

implementation.

For more information about adding an implementation to the Unity configuration, see the
section How to Add an Implementation to the Unity Configuration in the Sitecore E-Commerce
Developer’s Cookbook.

9. Configure SES to use the IOrderManager implementation. Update the mapTo attribute of

the /unity/container/register element named IOrderManager to the value of the

alias attribute of the new /unity/alias element that specifies your IOrderManager

implementation.

For more information about configuring SES to use your implementation, see the section How
to Replace a SES Component in the SES Developer’s Cookbook.

For more information about Unity configuration, including instructions to use different implementations
under different conditions, see the section Dependency Injection in the SES Developer’s Cookbook.

For an example about extending the OrderManager, see the section Extending the OrderManager.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 34 of 61

Note
If you integrate SES with an external order management system, Sitecore recommends that you also
write orders data to Sitecore, so that the website can continue to process orders even when the
external order management system is unavailable.

2.6.7 Extending the OrderLine

In the same way as a ShoppingCartLine represents a product in a cart, an OrderLine represents

a product in an order. When an add-on product is added to an order, the corresponding OrderLine
needs to be able to store the parent product code.

This section describes how to extend the class that represents an OrderLine to accommodate the

parent product code.

1. In Visual Studio, add a new class named

Sitecore.MySES.Extensions.AddOn.OrderLine

2. Add the following code to the class.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Sitecore.Marketing.SES.Extensions.AddOn

{

 public class OrderLine : Sitecore.Ecommerce.Orders.OrderLine

 {

 public string ParentProductCode { get; set; }

 }

}

2.6.8 Extending the OrderLine Data Template

In the previous section, you extended the OrderLine object to store a parent product code. By

default, SES uses Sitecore items to store order lines. Since the OrderLine has been extended, the

data template that represents an order line in Sitecore must also be extended.

This section explains how to extend the data template that represents an order line.

1. In the Content Editor, select the

/sitecore/templates/Ecommerce/Order/OrderLine item.

2. Create a field named ParentProductCode in the Data section.

Set the following properties:

Type: Single-Line Text

Unversioned: checked

Shared: checked

2.6.9 Extending the OrderManager

The ShoppingCartManager class stores information in memory, so its logic is pretty basic. The

OrderManager class does a lot more, but the basic idea is simple enough — take information from

one place (a cart) and save it to another (an order).

This section describes how to extend the OrderManager class in order to accommodate for the
parent product code.

1. In Visual Studio, add a new class called
Sitecore.MySES.Extensions.AddOn.OrderManager.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 35 of 61

2. Add the following code to the class:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Microsoft.Practices.Unity;

using Sitecore.Configuration;

using Sitecore.Data;

using Sitecore.Data.Items;

using Sitecore.Diagnostics;

using Sitecore.Ecommerce.Data;

using Sitecore.Ecommerce.DomainModel.Carts;

using Sitecore.Ecommerce.DomainModel.Data;

using Sitecore.Ecommerce.DomainModel.Payments;

using Sitecore.Ecommerce.Orders.Statuses;

using Sitecore.Ecommerce.Payments;

using Sitecore.Ecommerce.Search;

using Sitecore.Ecommerce.Utils;

using Sitecore.SecurityModel;

namespace Sitecore.Marketing.SES.Extensions.AddOn

{

 public class OrderManager<T> : Sitecore.Ecommerce.Orders.OrderManager<T>

 where T :

Sitecore.Ecommerce.DomainModel.Orders.Order

 {

 public OrderManager()

 : base()

 {

 }

 public OrderManager(ISearchProvider searchProvider)

 : base(searchProvider)

 {

 }

 private static TemplateItem _orderItemTemplate = null;

 protected virtual TemplateItem OrderItemTemplate

 {

 get

 {

 if (_orderItemTemplate == null)

 {

 var id =

Settings.GetSetting("Ecommerce.Order.OrderItemTempalteId");

 _orderItemTemplate = this.Database.GetTemplate(new ID(id));

 }

 return _orderItemTemplate;

 }

 }

 private static TemplateItem _orderLineItemTemplate = null;

 protected virtual TemplateItem OrderLineItemTemplate

 {

 get

 {

 if (_orderLineItemTemplate == null)

 {

 var id =

Settings.GetSetting("Ecommerce.Order.OrderLineItemTempalteId");

 _orderLineItemTemplate = this.Database.GetTemplate(new ID(id));

 }

 return _orderLineItemTemplate;

 }

 }

 protected virtual Item OrdersItem

 {

 get

 {

 Assert.IsNotNull(this.Database, "Orders database not found.");

 return this.Database.GetItem(this.ItemId);

 }

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 36 of 61

 }

 protected virtual T CreateOrderEntity<TShoppingCart>(

 TShoppingCart shoppingCart) where TShoppingCart :

ShoppingCart

 {

 var orderEntity = Sitecore.Ecommerce.Context.Entity.Resolve<T>();

 var entityHelper =

Sitecore.Ecommerce.Context.Entity.Resolve<EntityHelper>();

 entityHelper.CopyPropertiesValues<TShoppingCart, T>(shoppingCart, ref

orderEntity);

 return orderEntity;

 }

 protected virtual void AddOrderLines<TShoppingCart>(

 T orderEntity, TShoppingCart shoppingCart) where TShoppingCart :

ShoppingCart

 {

 foreach (ShoppingCartLine cartLine in shoppingCart.ShoppingCartLines)

 {

 var orderLine = ConvertToOrderLine(cartLine);

 orderEntity.OrderLines.Add(orderLine);

 }

 }

 protected virtual OrderLine ConvertToOrderLine<TShoppingCartLine>(

 TShoppingCartLine cartLine) where TShoppingCartLine :

ShoppingCartLine

 {

 var orderLine = Sitecore.Ecommerce.Context.Entity.Resolve<OrderLine>();

 orderLine.Product = cartLine.Product;

 orderLine.Totals = cartLine.Totals;

 orderLine.Quantity = cartLine.Quantity;

 orderLine.FriendlyUrl = cartLine.FriendlyUrl;

 orderLine.ParentProductCode = cartLine.ParentProductCode;

 return orderLine;

 }

 protected virtual void SetOrderDetails<TShoppingCart>(

 T orderEntity, TShoppingCart shoppingCart) where TShoppingCart :

ShoppingCart

 {

 var tData = Sitecore.Ecommerce.Context.Entity.Resolve<ITransactionData>();

 var persistentValue = tData.GetPersistentValue(

 shoppingCart.OrderNumber,

TransactionConstants.TransactionNumber);

 var transactionNumber = TypeUtil.TryParse<string>(persistentValue,

string.Empty);

 if (!string.IsNullOrEmpty(transactionNumber))

 {

 orderEntity.TransactionNumber = transactionNumber;

 }

 orderEntity.OrderDate = System.DateTime.Now;

 }

 protected virtual void SetOrderStatus<TShoppingCart>(

 T orderEntity, TShoppingCart shoppingCart) where TShoppingCart :

ShoppingCart

 {

 orderEntity.Status =

Sitecore.Ecommerce.Context.Entity.Resolve<NewOrder>();

 orderEntity.ProcessStatus();

 }

 protected virtual void SaveOrder<TShoppingCart>(

 T orderEntity, TShoppingCart shoppingCart) where TShoppingCart :

ShoppingCart

 {

 Item orderItem;

 using (new SecurityDisabler())

 {

 orderItem = this.OrdersItem.Add(shoppingCart.OrderNumber,

 this.OrderItemTemplate);

 Assert.IsNotNull(orderItem, "Failed to create to order item");

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 37 of 61

 if (orderEntity is IEntity)

 {

 ((IEntity)orderEntity).Alias = orderItem.ID.ToString();

 }

 }

 try

 {

 this.SaveOrder(orderItem, orderEntity);

 }

 catch

 {

 using (new SecurityDisabler())

 {

 orderItem.Delete();

 }

 throw;

 }

 }

 public override T CreateOrder<TShoppingCart>(TShoppingCart shoppingCart)

 {

 Assert.IsNotNull(shoppingCart, "Shopping Cart is null");

 //Creating a new order means creating a new Sitecore item,

 //so get data template must be specified

 Assert.IsNotNull(this.OrderItemTemplate, "Order item template is null");

 var orderEntity = CreateOrderEntity(shoppingCart);

 AddOrderLines(orderEntity, shoppingCart);

 SetOrderDetails(orderEntity, shoppingCart);

 SetOrderStatus(orderEntity, shoppingCart);

 SaveOrder(orderEntity, shoppingCart);

 return orderEntity;

 }

 }

}

2.6.10 Extending the OrderLineMappingRule

SES handles the work of creating the Sitecore items needed to accommodate an order and its order
lines, as long as the order information is provided to SES. The OrderManager handles the order

information in SES. The OrderManager also specifies which data template should be used for the

order and order lines.

One thing that is not specified in the OrderManager, however, is the mapping of entity values to

Sitecore item fields. This mapping rule is the entity that handles this mapping. Since you added a new

field on the OrderLine class and the OrderLine data template, you need to define the mapping

between the two.

This section describes how to extend the class that represents the OrderLineMappingRules in

order to map the new property in the OrderLine class to the corresponding field on the OrderLine

data template.

1. In Visual Studio, add a new class named
Sitecore.MySES.Extensions.AddOn.OrderLineMappingRule.

2. Add the following code to the class:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Sitecore.Ecommerce.Data;

using Sitecore.Ecommerce.Validators.Interception;

namespace Sitecore.Marketing.SES.Extensions.AddOn

{

 public class OrderLineMappingRule : Sitecore.Ecommerce.Data.OrderLineMappingRule

 {

 [Entity(FieldName = "ParentProductCode")]

 public virtual string ParentProductCode

 {

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 38 of 61

 get

 {

 if (this.MappingObject is OrderLine)

 {

 var line = this.MappingObject as OrderLine;

 return line.ParentProductCode;

 }

 return string.Empty;

 }

 [NotNullValue]

 set

 {

 if (this.MappingObject is OrderLine)

 {

 var line = this.MappingObject as OrderLine;

 line.ParentProductCode = value;

 }

 }

 }

 }

}

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 39 of 61

2.7 The SES Product Stock Components

The following class diagram gives you an overview of the product stock contracts:

The following class diagram gives you an overview of the product stock implementation:

2.7.1 The Product Stock Contracts

The following table describes each of the product stock related contracts. It presents the contract’s
functionality and default implementation. It also presents the parent contract that this class
implements.

Contract Description

IProductStockManager Sitecore.Ecommerce.DomainModel.Products.IProduc

tStockManager allows you to read and update the stock

amount for specific products in the product repository.

Example:

public void ShouldReadStockFromProductItem()

 {

 IProductStockManager stockManager =

Context.Entity.Resolve<IProductStockManager>();

 ProductStockInfo stockInfo = new

ProductStockInfo { ProductCode = "1002" };

 long stock =

stockManager.GetStock(stockInfo).Stock;

 }

This contract has two implementations:

 The ProductPriceManager class in the Kernel.

 The RemoteProductPriceManager class in the

Service model — This implementation is a service that
is used in case of split content management and content
delivery environment.

For more information, see the SES Scaling Guide.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 40 of 61

Contract Description

ProductStock Sitecore.Ecommerce.DomainModel.Products.Product

Stock represents the stock amount of a given product returned

from the IProductStockManager.

The default implementation of this contract is the
Sitecore.Ecommerce.Products.ProductStock class,

which implements the IProductRepositoryItem interface.

PoductStockInfo Sitecore.Ecommerce.DomainModel.Products.Product

StockInfo is both the contract and the implementation

passed to IProductStockManager methods representing the

arguments being used.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 41 of 61

2.8 The SES Shipping Components

The following class diagram gives you an overview of the shipping contract:

The following class diagram gives you an overview of the shipping implementation:

2.8.1 The Shipping Contract

The following table describes the shipping related contract. It presents the contract’s functionality and
default implementation. It also presents the parent contract that this class implements.

Contract Description

ShippingProvider Sitecore.Ecommerce.DomainModel.Shippings.ShippingPr

ovider exposes information about a shipping system.

The default implementation of this contract —
Sitecore.Ecommerce.Shippings.ShippingProvider —

represents the children of the item specified in the System Links
section in the Shipping Providers Link field of the Business Catalog

of the current site — (<home>/Site Settings/Business

Catalog).

Note
The default implementation cannot communicate with the external
shipping providers.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 42 of 61

2.9 The SES Shopping Cart Components

The following class diagram gives you an overview of the shopping cart contracts:

The following class diagram gives you an overview of the shopping cart implementation:

2.9.1 The Shopping Cart Contracts

The following table describes each of the shopping cart related contracts. It presents the contract’s
functionality and default implementation. It also presents the parent contract that this class
implements.

Contract Description

ProductLine See the section The Product Contracts.

IShoppingCartManager Sitecore.Ecommerce.DomainModel.Carts.IShoppingC

artManager defines a programming interface for managing the

content of a shopping cart.

The default implementation of this contract —
Sitecore.Ecommerce.Carts.ShoppingCartManager —

stores information in the ASP.NET session.

Example:

public void ShouldAddProductToShoppingCart()

 {

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 43 of 61

Contract Description

 IShoppingCartManager cartManager =

Context.Entity.GetInstance<IShoppingCartManager>();

 cartManager.AddProduct("1002", 2);

 ShoppingCart cart =

Context.Entity.GetInstance<ShoppingCart>();

 IList<ShoppingCartLine> lines =

cart.ShoppingCartLines;

 }

ShoppingCart Sitecore.Ecommerce.DomainModel.Carts.ShoppingCa

rt exposes information about the state of an individual

shopping cart, such as the customer associated with the cart,
and the contents of the cart.

The default implementation of this contract —
Sitecore.Ecommerce.Carts.ShoppingCart —

implements typical shopping cart functionality.

ShoppingCartLine Sitecore.Ecommerce.DomainModel.Carts.

ShoppingCartLine implements the ProductLine class and

exposes information about a line item in a shopping cart.

The default implementation of this contract —
Sitecore.Ecommerce.Carts.ShoppingCartLine —

represents the descendants of an order item as described in the
section The SES Order.

2.9.2 Extending the ShoppingCartLine

When a product is added to a shopping cart, a shopping cart line is created. The shopping cart line
represents a product in the cart. An add-on is a product that is added to a cart, but some additional
information must be recorded. You need to know if the product is an add-on for another product. This
can be accomplished by saving the product code for the parent product.

This section describes how to extend the class that represents a ShoppingCartLine in order to

accommodate this information.

1. In Visual Studio, add a new class named
Sitecore.MySES.Extensions.AddOn.ShoppingCartLine.

2. Add the following code to the class:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Sitecore.Marketing.SES.Extensions.AddOn

{

 public class ShoppingCartLine : Sitecore.Ecommerce.Carts.ShoppingCartLine

 {

 public string ParentProductCode { get; set; }

 }

}

2.9.3 Extending the ShoppingCartManager

You can use the ShoppingCartManager class to create the ShoppingCartLine and to add the

ShoppingCartLine to the cart.

This section describes how to extend the class that represents the ShoppingCartManager to

accommodate the parent product code.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 44 of 61

1. In Visual Studio, add a new class named
Sitecore.MySES.Extensions.AddOn.ShoppingCartManager.

2. Add the following code to the class:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Sitecore.Ecommerce;

using Sitecore.Ecommerce.Carts;

using Sitecore.Ecommerce.DomainModel.Prices;

using Sitecore.Ecommerce.DomainModel.Products;

using Sitecore.Ecommerce.DomainModel.Currencies;

namespace Sitecore.Marketing.SES.Extensions.AddOn

{

 public class ShoppingCartManager : Sitecore.Ecommerce.Carts.ShoppingCartManager

 {

 public ShoppingCartManager(IProductRepository productRepository,

 IProductPriceManager productPriceManager)

 : base(productRepository, productPriceManager)

 {

 }

 protected virtual ShoppingCartLine GetShoppingCartLine(

 string parentProductCode,

 string addonProductCode)

 {

 var product = GetProduct(parentProductCode);

 var addon = GetProduct(addonProductCode);

 var cart = Sitecore.Ecommerce.Context.Entity.GetInstance<ShoppingCart>();

 foreach (var line in cart.ShoppingCartLines)

 {

 if (string.Equals(line.Product.Code, addonProductCode))

 {

 var line2 = line as ShoppingCartLine;

 if (line2 == null)

 {

 continue;

 }

 if (string.Equals(line2.ParentProductCode, parentProductCode))

 {

 return line2;

 }

 }

 }

 return null;

 }

 protected virtual ProductBaseData GetProduct(string productCode)

 {

 if (string.IsNullOrEmpty(productCode))

 {

 return null;

 }

 var repository =

Sitecore.Ecommerce.Context.Entity.Resolve<IProductRepository>();

 return repository.Get<ProductBaseData>(productCode);

 }

 public virtual void AddAddOn(string productCode, string parentProductCode)

 {

 var line = this.GetShoppingCartLine(productCode, parentProductCode);

 if (line != null)

 {

 return;

 }

 line = Sitecore.Ecommerce.Context.Entity.Resolve<ShoppingCartLine>();

 line.Product = GetProduct(productCode);

 line.ParentProductCode = parentProductCode;

 line.Quantity = 1;

 var cart = Sitecore.Ecommerce.Context.Entity.GetInstance<ShoppingCart>();

 var mgr =

Sitecore.Ecommerce.Context.Entity.GetInstance<IProductPriceManager>();

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 45 of 61

 line.Totals = mgr.GetProductTotals<Totals, ProductBaseData, Currency>(

 line.Product, cart.Currency,

line.Quantity);

 cart.ShoppingCartLines.Add(line);

 }

 }

}

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 46 of 61

2.10 The SES Pricing Components

The following class diagram gives you an overview of the pricing contracts:

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 47 of 61

The following class diagram gives you an overview of the pricing implementation.

2.10.1 The Pricing Contracts

The following table describes each of the pricing related contracts. It presents the contract’s
functionality and default implementation. It also presents the parent contract that this class
implements.

Contract Description

Totals Sitecore.Ecommerce.DomainModel.Prices.Totals

implements the IDictionary interface and exposes

information about pricing totals for an order.

The default implementation of this contract —
Sitecore.Ecommerce.Prices.Totals — stores data in

session during transactions and persists that data in order items
as described in the section, The SES Order.

VatRegion Sitecore.Ecommerce.DomainModel.Addresses.VatReg

ion exposes information about a tax region.

IProductPriceManager Sitecore.Ecommerce.DomainModel.Prices.IProductP

riceManager defines a programming interface for product

pricing.

This contract has two implementations:

 The ProductPriceManager class in the Kernel. This

implementation calculates the price for a product. As
different prices apply to different customers, a Totals
object is used to represent the price. The base price
comes from the pricing information stored on the
product definition item in the Product Meta Info section
in the Price field. The VAT rate that is associated with
the product is also included in this calculation.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 48 of 61

Contract Description

Example:
public void GetProductTotalsTest()

 {

 IProductRepository productProvider =

Context.Entity.Resolve<IProductRepository>();

 ProductBaseData product =

productProvider.Get<ProductBaseData>(this.ProductIte

mId.ToString());

 IProductPriceManager

productPriceManager =

Context.Entity.Resolve<IProductPriceManager>();

 Totals totals =

productPriceManager.GetProductTotals(product);

 }

 The RemoteProductStockManager class in the

Service model — This implementation is a service that
is used when the content management and content
delivery systems have been separated.

For more information, see the SES Scaling Guide.

ICurrencyConverter There are two currencies in SES: Master and Display currency.
You can set them in the General Settings item.
The Master currency is defining the default currency used in the
product repository and the Display currency is used in case you
want to display a different currency at the frontend. If Master and
Display currencies are different, the implementation of the
contract
Sitecore.Ecommerce.DomainModel.Currencies.ICurr

encyConverter is resolved and is responsible for

converting product price from Master currency to Display
currency. The default implementation uses the conversion rates
from the Business Catalog.

Sitecore.Ecommerce.Prices.ProductPriceManager

uses the ICurrencyConverter interface.

The default implementation of this contract is
Sitecore.Ecommerce.Currencies.CurrencyConverter.

Currency Sitecore.Ecommerce.DomainModel.Currencies.Curre

ncy exposes information about a currency.

The default implementation —
Sitecore.Ecommerce.Currencies.Currency — of this

contract represents the children of the item specified by the:

 Business Catalog,

 System Links section,

 Currencies Link field

(<home>/Site Settings/Business Catalog).

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 49 of 61

Contract Description

ProductPriceBaseData Sitecore.Ecommerce.DomainModel.Products.Product

PriceBaseData

represents the product price information.
Contains the Price Matrix (XML as simple string) and product
code.
Implements IProductRepository.

2.10.2 Adding a Price Type to the Default IProductPriceManager
Implementation

To add a price type to the default IProductPriceManager implementation:

1. In the Content Editor, select the

/Sitecore/System/Modules/Ecommerce/PriceMatrix/Shop item.

2. In the Content Editor, insert a new price type definition item using the Ecommerce/Price

Field/PriceMatrixPrice data template.

3. In the new price type definition item, in the Data section, in the Title field, enter the label for
the new price type.

4. In the Content Editor, sort the price type definition items to control their order of appearance
in the Price field of product definition items.

5. In the Content Editor, edit product definition items. In the Product Meta Info section, in the
Price field, enter values for the new price type.

6. Update rendering components to apply the new price type as appropriate.

To access the new price type for a product, pass the value of the Title field in the product price type
definition item as the second parameter to the GetPriceMatrixPrice() method of the

IProductPriceManager contract.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 50 of 61

2.11 The SES Payment Providers Components

The following class diagram gives you an overview of the payment provider contracts.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 51 of 61

The following class diagram gives you an overview of the payment provider implementation.

2.11.1 The Payment Providers Contracts

The following table describes each of the payment providers related contracts. It presents the
contract’s functionality and default implementation. It also presents the parent contract that this class
implements.

Contract Description

PaymentSystem Sitecore.Ecommerce.DomainModel.Payments.P

aymentSystem exposes information about an online

payment provider gateway.
For more information about payment providers, see the
manual SES Payment Provider Guide.

The default implementation of this contract —
Sitecore.Ecommerce.Payments.PaymentSystem

— represents a child of the item specified by the:

 Business Catalog,

 System Links section,

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 52 of 61

Contract Description

 Payment Systems Link field

(<home>/Site Settings/Business Catalog).

PaymentProvider Sitecore.Ecommerce.DomainModel.Payments.P

aymentProvider is the base contract for all of the

SES payment providers.

This contract has two methods:

 Invoke

 ProcessCallback

IReservable Sitecore.Ecommerce.DomainModel.Payments.I

Reservable is an additional contract for payment

providers that is used for payment reservation and
deferred capturing.

This contract has three methods:

 Invoke to invoke a payment.

 Capture to capture a payment and save the

value of the payment as a persistent value in the
HTTP context.

 CancelReservation to cancel a reservation

ITransactionData Sitecore.Ecommerce.DomainModel.Payments.I

TransactionData defines a programming interface to

persist payment transaction information between HTTP
requests.

The default implementation of this contract —
Sitecore.Ecommerce.Payments.TransactionDa

ta — stores data in the ASP.NET session.

For more information, see the manual SES Payment Provider Guide.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 53 of 61

2.12 The SES Content-to-Object Mapping Components

The following class diagram gives you an overview of the object content management data contracts.

2.12.1 The Content-to-Object Mapping Contracts

The following table describes each of the Content-to-Object Mapping (COM) related contracts. It
presents the contract’s functionality and default implementation. It also presents the parent contract
that this class implements.

Contract Description

IDataMapper Sitecore.Ecommerce.Data.IDataMapper defines a programming

interface to help various data manager objects abstract storage.

The default implementation of this contract —
Sitecore.Ecommerce.Data.DataMapper — represents data as

Sitecore items.
The default IDataMapper implementation uses the Entity attribute in

.NET to determine the data templates and fields associated with various
data elements.

For example, the Entity attributes in square brackets (“[]”) define the ID of

a data template for products and the name of a field in that data template
that contains the specified property:

[Entity(TemplateId = "{B87EFAE7-D3D5-4E07-A6FC-

012AAA13A6CF}")]

public class Product : DomainModel.Products.ProductBaseData,

IEntity

 {

 [Entity(FieldName = "Name")]

 public override string Name { get; [NotNullValue] set; }

...

}

EntityHelper Sitecore.Ecommerce.Data.EntityHelper provides an API that the

default implementation of the IDataMapper contract uses to access the

value of the Entity attributes in .NET code. The class that defines the

EntityHelper contract also serves as the default implementation of the

contract.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 54 of 61

Contract Description

IEntityProvider Sitecore.Ecommerce.DomainModel.Data.IEntityProvider

provides an API to access a variety of similar data types.

The default implementation of this contract —
Sitecore.Ecommerce.Data.EntityProvider — retrieves data of

items based on the Ecommerce/Business Catalog/Option Value

data template or any data template that inherits from that data template.
You can use the IEntityProvider contract to access information about

countries, country states, currencies, delivery alternatives, language option
values, notification options, payments, and VAT option values.
For example, to access information about every country:

Using Sitecore.Ecommerce.DomainModel.Data;

Using Sitecore.Ecommerce.DomainModel.Addresses;

...

IEntityProvider<Country>

 countries =

Sitecore.Ecommerce.Context.Entity.Resolve<IEntityProvider<Country>>();

foreach

(Country country

 in countries.GetAllEntities())

{

...

}

To use country code to access a specific country:
Country unitedStates = countries.GetEntityByCode("US");

IMappingRule Sitecore.Ecommerce.Data.IMappingRule defines a programming

interface that represents adapters for mapping between physical and logical
storage for complex types, including conversion between system and
Sitecore internal data types such as dates in the ISO string format used by
Sitecore.

Sitecore provides two default implementations of this contract:

 The Order mapping rule

(Sitecore.Ecommerce.Data.OrderMappingRule)

implementation of the IMappingRule contract adapts orders from

items in the content tree.

 The OrderLine mapping rule

(Sitecore.Ecommerce.Data.OrderLineMappingRule)

implementation of the IMappingRule contract adapts order lines

from items in the content tree.

The default implementation of this contract uses Unity to determine which
IMappingRule to use. The default configuration uses

OrderMappingRule and OrderLineMappingRule. However, you could

change the Unity.config file to use different IMappingRule objects.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 55 of 61

2.13 The SES Search Provider Components

The following class diagram gives you an overview of the search provider contracts:

The following class diagram gives you an overview of the search provider implementation:

2.13.1 The Search Provider Contracts

The following table describes each of the contracts that are related to the payment providers. It
presents the contract’s functionality and default implementation. It also presents the parent contract
that this class implements.

Contract Description

ISearchProvider Sitecore.Ecommerce.Search.ISearchProvider defines a

programming interface for locating items that match specific criteria.

SES provides three implementations of this contract:

 The Lucene search provider
(Sitecore.Ecommerce.Search.LuceneSearchProvi

der).

 The Sitecore Query search provider
(Sitecore.Ecommerce.Search.SitecoreQuerySear

chProvider).

 The Sitecore Fast Query search provider
(Sitecore.Ecommerce.Search.FastQuerySearchPr

ovider).

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 56 of 61

2.14 The SES Analytics Component

The following class diagram gives you an overview of the analytics contract.

2.14.1 The Analytics Contract

The following table describes the analytics contract. It presents the contract’s functionality and default
implementation. It also presents the parent contract that this class implements.

Contract Description

AnalyticsHelper This contract supports the integration between the Sitecore Digital
Marketing System (DMS) and SES.

For more information about the DMS, see
http://www.sitecore.net/en/Products/Digital-Marketing-System.aspx

For more information about using APIs to access SES events, see the
classes in the
Sitecore.Ecommerce.Analytics.Components.PageEvents

namespace and the
Sitecore.Ecommerce.Analytics.AnalyticsHelper class.

For more information about SES and DMS, see the manual SES DMS Cookbook.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 57 of 61

2.15 The SES Product Resolver Components

The following class diagram gives you an overview the search product resolver contracts.

2.15.1 The Product Resolver Contracts

The following table describes each of the product resolver related contracts. It presents the contract’s
functionality and default implementation. It also presents the parent contract that this class
implements.

Contract Description

ProductUrlProcessor Sitecore.Ecommerce.Catalogs.ProductUrlPro

cessor defines two programming interfaces — one that

determines the URL of a product item and another that
determines the product specified by a URL. Product
resolvers control how SES constructs and parses the
URLs of product pages.

SES provides multiple implementations for the
ProductUrlProcessor contract:

 Sitecore.Ecommerce.Catalogs.NamePro

ductUrlProcessor that uses product names.

 Sitecore.Ecommerce.Catalogs.CodePro

ductUrlProcessor that uses product codes.

 Sitecore.Ecommerce.Catalogs.NameAnd

CodeProductUrlProcessor that uses

product names and codes.

By default, the product URLs begin with the path to the
page that links to the product. For example, if the
Products item of a managed website contains a link to a
product called product_name with a code called
product_id, the default URL that is generated for that

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 58 of 61

Contract Description

product is /products/product_name.aspx,

/products/product_name_product_id.aspx, or

/products/product_id.aspx, depending on the

ProductUrlProcessor implementation that SES

applies.
For more information about the
ProductUrlProcessor implementation that SES

applies, see the section How to Specify the Product URL
Format in the SES Developer’s Cookbook.

VirtualProductResolver Sitecore.Ecommerce.Catalogs.VirtualProduc

tResolver defines an API to determine the Sitecore

item that represents a product. This item is specified by
a URL generated by a ProductUrlProcessor

implementation. The VirtualProductResolver

contract applies the ProductUrlProcessor contract

that is appropriate in the context to determine the item
specified by the URL. The ProductResolver

processor that SES adds to the httpRequestBegin

pipeline defined in the Web.config file uses the

VirtualProductResolver to determine the item

associated with a requested URL.

The class that defines the VirtualProductResolver

contract also serves as the default implementation of the
VirtualProductResolver contract.

For more information about product URLs and product
resolution, see the corresponding sections.

VirtualProductResolverArgs Sitecore.Ecommerce.Catalogs.VirtualProduc

tResolverArgs is an argument class that wraps

parameters for passing it in the SES model.

2.15.2 Adding a ProductUrlProcessor Implementation

You can add a ProductUrlProcessor implementation to define a custom format for product URLs.

To add an implementation of the ProductUrlProcessor contract:

1. In the Visual Studio project, add a class that inherits from the ProductUrlProcessor base

class — Sitecore.Ecommerce.Catalogs.ProductUrlProcessor.

2. In the new class, implement a constructor that accepts an object based on the
ISearchProvider contract.

For more information about the ISearchProvider contract, see the description of the

ISearchProvider contract.

3. In the new class, implement the GetProductUrl() method to return the URL to use for a

product.

4. In the new class, implement the ResolveProductItem() method to return the product item

associated with a URL of a product.

5. In the Unity configuration, add a /unity/alias element. Set the name attribute of the new

/unity/alias element to the name of the class. Set the type attribute of the new
/unity/alias element to the .NET type of the class.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 59 of 61

Example:

<alias name="MyProductUrlProcessor"

 type="MyNamespace.MyProductUrlProcessor, MyAssembly"/>

6. In the Unity configuration, add a /unity/container/register element. Set the type

attribute of the new /unity/container/register element to ProductUrlProcessor.

Set the mapTo attribute of the new /unity/container/register element to the name

attribute of the new /unity/alias element. Set the name attribute of the new

/unity/container/register element to a unique prefix based on the implementation,

such as My. Copy the elements enclosed in one of the other

/unity/container/register elements with a value of ProductUrlProcessor for the

type attribute.

Example:

<register type="ProductUrlProcessor"

 mapTo="MyProductUrlProcessor" name="My">

 <lifetime type="perthread"/>

 <constructor>

 <param name="searchProvider">

 <dependency name="FastQuerySearchProvider"/>

 </param>

 </constructor>

</register>

7. In the Content Editor, beneath the

/Sitecore/System/Modules/Ecommerce/System/Display Product Modes item,

insert a ProductUrlProcessor definition item using the

Ecommerce/Settings/Settings Item data template. Give the new

ProductUrlProcessor definition item a meaningful name based on the implementation,

such as MyProductUrlProcessor.

8. In the new ProductUrlProcessor definition item, in the Data section, in the Key field,

enter the value of the name attribute of the new /unity/container/register element,

for example My.

Sitecore E-Commerce Services 1.2

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 60 of 61

2.16 Miscellaneous SES Components

The following class diagram gives you an overview of the miscellaneous contracts.

The following class diagram gives you an overview of the miscellaneous implementation.

2.16.1 Miscellaneous Contracts

The following table describes each of the miscellaneous contracts. It presents the contract’s
functionality and default implementation. It also presents the parent contract that this class
implements.

Contract Description

AddressInfo Sitecore.Ecommerce.DomainModel.Addresses.AddressInfo

exposes information about a physical address.

The default implementation of this contract —
Sitecore.Ecommerce.Addresses.AddressInfo — represents typical

address information.

Country Sitecore.Ecommerce.DomainModel.Addresses.Country exposes

information about a country.

The default implementation of this contract —
Sitecore.Ecommerce.Addresses.Country — represents the children

of the item specified by the:

 Business Catalog item

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 61 of 61

Contract Description

 System Links Section

 Countries Link field

(<home>/Site Settings/Business Catalog).

Notification

Option

Sitecore.Ecommerce.DomainModel.Shippings.NotificationOp

tion exposes information about how a customer prefers to receive

notification about the status of an order.

The default implementation of this contract —
Sitecore.Ecommerce.Shippings.NotificationOption —

specifies that Sitecore sends an e-mail to customers about each order that
they place on the webshop.

ICheckOut Sitecore.Ecommerce.DomainModel.CheckOuts.ICheckOut

defines a programming interface to determine or alter the state of the
shopping checkout process.

Before Sitecore renders a checkout page, the checkout page accesses the
properties and methods in the default implementation of the ICheckOut

contract to ensure that the preceding process has been completed.

IMail Sitecore.Ecommerce.DomainModel.Mails.IMail is used to send e-

mails using a template-based or a custom method.

It defines a programming interface for sending e-mail.

The default implementation of this contract —
Sitecore.Ecommerce.Mails.Mail — uses the MailServer,

MailServerUserName, MailServerPassword, and MailServerPort

settings in the Web.config file.

