Sitecore Ecommerce Enterprise Edition @ .
System Overview Documentation Rev. January 19, 2011 S I t e Co re

Sitecore Ecommerce Enterprise Edition

Software Developer Kit

System Overview Documentation

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Sitecore Ecommerce Enterprise Edition @ Sl teco re

System Documentation

Chapter 1: INtrodUCTIONcooiiiiee e 3
Goal Of thiS MANUALcoiii e e e e e e e 3
Components Of the SDK..........eee e e e e 3
ATCRITECIUNE ...ttt e e e e e e e e e e e e e e e 4

Architectural PhilOSOPRNYcooiiiii e 4
Database/ORM/IData CoNtrollereeeeiiiiiiiiieeee e 6
INSIHE.IMOTEI ... e e 6
INSIEE.DOMAIN. ...t e e e e e e e e e e e 8
INSIEE.LIDIAIY ...ttt e e e e e e e r e e e e e e e e e anneeees 8
P Ve o] o TN T PP PPT PP 8
ManagemeENt CONSOIE.ueiii et e e e 8
Global vs. Website Managed HEMS ..o 9

L0 F= o (=Y gl 0 T o [=T o 10
How the user Creates @an Order.c.uuiiiiiiii e 10
StEPS IN Order ProCESSING. .. .ciiiutiiie ettt 10

Chapter 3: Web Site Construction & COmMpoNeNnts..........ccccuivmmermnnsmmenmnssssssmnssssesssssnsens 12
Web Site Components — Base CONSIIUCES..........uiiiiiiiiiii e 12
WED Site APP_COTE.....eeeiiieieie ettt e e 13
WED SIE CONLIOIS ...t e e e e e e e e e e e e e e as 13
YL E=T o] = PRSPPI 13

Chapter 4: Key Model COMPONENTS.......cccccirmmmmmmriiiniiiisnmsss s sssssssssssssss s s ss s sssssssss s s s ssssnsses 15
MOEIBASE ... et e e 15
CommoN Methods iN CIASSES.......uiiiiiiiiiiiiiie e e e e e e 15
OVENVIEW Of KEY CIASSESeiiiiiiiiiii ittt 16

AFFIATE. ..o e e 16
PV o] o] [[ez=14[o] 0] I o [P PP 16
APPICAtIONMESSAGE. ...t e e 17
(07T =T PSP OUU PP TPPPR 17
(0= 1 (=T [] VPP OPPPPPRP 17
Content (and related ClaSSES)uuuueiiiiiaiiiiee e 18
(O7U T (o] 0 1 =T TP UU PP TPPPR 19
CUSTOMErOrder/OrAEILINEcoiiiiiiie et ee e 19
DA ... 21
Document ManageMENTueiiiiiiiiiiiiie ettt e e e e 21
EMAIl PrOCESSING ...eeeiiiiiiiiiite ettt e e e e 21
Filtering/Advanced FilteriNgcooo e 22
GiftCard/GiftCardTranSaCioNueiiiiiie e 23
Interface Classes — GENEIaAlccoiiiiiiiiiiie e 23
Interface: IDAtaCONTIOIENooii e 23
Interface: IEMailPrOCESSONuuiii e 23
Interface: 10rderPackager...........ovi i 23
Interface: IPaymMentGateWaycooiuiiiiiiiiiee e 24
Interface: IPriCECAICUIALON.coii e 24
Interface: IPromOtiONENQINEcoooiiiiie e 24
Interface: ISNIPPINGENGINEuiiiiie s 24
Integration: [TaXCalCUIATON.........cuui i 24
PaCKAGELINE ...ttt e e e e e e e e e e e e e e e e 24
PrOQUCT ... e e e e e e e e e e e e e 25

Sitecore Ecommerce Enterprise Edition @ Sl teco re

System Documentation

PrOMOLIONS ... e e e e e e e e e e e e e e e e e 27
Property Class (QENEIIC)uuuuiiiiiiiee ittt e e e e e e e 27
ST 1T 14 F= o PP OPPTPPRR 28
STl g =T] (=T I =T S PSP UU PP PPPPP 28

] 411 01001 1 TP UU PP OPPPRP 28
Shipping RUlES & CONSIIUCESuueiiiiiiieiii e 28
SPECIFICALION ... 29
SUDSCIIPHONS ...t s e e e e e e 29
TaX CalCUIRLIONS ..ot e e e e e e e e e e e nnnee s 30

0 ET=Tg o (0] 1= PSP PPPPPPR 31

LV =] 0o (o PSP EPPPP PRSPPI 31
WD SO ... e e e e e e 31
WIishList/WiShLISTPrOQUCTccoiiiiiieieee e 32
Chapter 5: INtegration...........oc e 33
General INtegration FIOWcooiiiii e 33
BaSIC WOIKIIOW.....ceiiiiiieee e a e e 33
RETTESNES ... e a e e 34
PrIMAry ClaSSESuueiiiiiiiiie ittt 34
Creating your own custom integrationcoooii i 35
Technical Overview — Windows Integration ServiCeeeeeeiiiiiiiiiiiiii e 36
InSite.IntegrationServiCe ProjECL........ .o 36
InSite.IntegratioNBroKer ProjeCtueii i 36
INSite.INtegration ProOJECToo e 37
Management CONSOIE SIAEeeiiiiiiieee ettt e e e e 38
InSite.Management Web Project ... 38
INSite.DOMAIN PrOJECT ... e e e 39

Page 2

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

Chapter 1: Introduction

In the first chapter you will get the background and development philosophy of Sitecore
Enterprise Commerce including:

v’ Background of product
v’ Sitecore Ecommerce Enterpise Edition Components

v’ Architecture & Philosophy

Goal of this manual

The goal of this manual is to provide the student or reader a basic understanding of the
Sitecore Ecommerce Enterprise Edition toolkit. Together with the SDK training
curriculum and other documentation, the student should be able to leverage their .NET
expertise to use Sitecore Ecommerce Enterprise Edition to rapidly build and maintain
their own, robust, fully e-commerce enabled web sites.

Components of the SDK

Sitecore Ecommerce Enterprise Edition (SEEE for the rest of this document) is a set of
software components that can either add eCommerce functionality to an existing
Sitecore site or help rapidly create and deploy custom web sites.

SEEE contains several core components including:

e Management Console — this is an Adobe Flex-based system that allows for
maintenance of data associated with the site. This includes application
configuration settings, shipping data, promotions, content, order history and
much more. This is the set of pre-defined functionality that allows a non-
programmer to maintain the site.

¢ [nsite.Model — this is the set of classes that is used to access the data and
methods within SEEE.

¢ Insite.Domain — this is a set of classes and functions that interfaces externally
to various functions such as credit card processors and tax services.

¢ Nicam Demo Site — this is a sample web site complete with sample C#,
ASP.NET pages, HTML and CSS. This is the starting point for the student to
do their exercises and to create new projects.

e Template database — this is an MSSQL 2005 database complete with sample
data to be used with the template site.

e Sample "Generic” code — several of the core components of the application
use Inversion of Control to allow customized extensions for customer-specific
use. The generic versions of these programs are provided so the student may
create their own versions of the code as needed.

Page 3

Sitecore Ecommerce Enterprise Edition @ S | teco re@

System Documentation

e Integration Service —along with the sample code, the integration service is
provided so that the user can create their own integrations with SEEE. In
general, the supported integration is either through a flat-file transfer or a direct
database connection to the ERP. Web services and APIs may also be used.

Architecture

Insite Commerce — Technology Stack

(2]
c
2 Windows | Flex_|] duica
= Integration WEEDEImas. T Web Browser — Web Site —
. Management Console DHTML
Service
g SOAP AMF3 JSON-RPC
g,
g o}
S
£
(o]
(&)
o)
= Domain — External Interfaces
(1] . &
% | (Customen order, Product, Gontenyy | (Payment Gateway, ERP Integration
§ ’ ’ ’ Tax Connect, Shipping)
@
n:a’ Inversion of Control / Microsoft Unity Application Block
@
o
|
28
[}
Aé S
<
o

Architectural Philosophy

Sitecore Ecommerce Enterprise Edition’s underlying architectural philosophy is to
leverage existing technology that is appropriate for business environments that is
scalable, robust and proven. The designers of Sitecore Ecommerce Enterprise Edition
believe that .NET along with other, open source componentry brings a state of the art,
flexible, and scalable technology to Sitecore customers and partners.

KISS Principle. Keep It Simple, Stupid. This philosophy states that elegance is in
simplicity, not intentional complexity. We try to teach our internal developers to use
existing functionality rather than creating new facilities, adherence to standards and
naming conventions. If some piece of code can be written in one line of code using 5
embedded functions or in three separate lines that makes it more readable, then we
prefer more lines of code. This can be anathematic to some developers, but our
experience teaches us to write easily understood, maintainable code. Remember, you
may not be the one that has to maintain the code.

Page 4

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

Standard Nomenclature. Our goal in our designs is to have properties and methods
be self-describing. We do this by standardizing contractions or, preferentially, spelling
out words. For example, if we want to refer to the ‘quantity’ of an item, Qity is the
standard contraction. The current standards are readily apparent when browsing the
object model. Additionally, for simplicity and ease of use, we do not repeat the data
type within the property in general, so Activate is used consistently as a date the entity
becomes active and Deactivate is the date the entity becomes inactive. In cases where
the active status of an entity is Boolean, the IsActive property would be used.
Promotions are a good example of when something should become
activated/deactivated.

Framework Orientation. The model, which covers the bulk of the underlying
functionality you will work with, is explicitly written to be a framework. Thus, there is a
ModelBase class that everything inherits from so if we want to add core functionality, we
are able to do so at the appropriate layer of logic.

Programming to Interfaces/Design Patterns. The construction of SEEE is heavily
influenced by the notion of design patterns. We strongly suggest that if you are not
familiar with design patterns that you obtain a book and read through it to understand
them. Design Patterns bring an orientation to programming whereby best practices are
used to determine the way to approach a problem. Very few problems in the domain of
web programming are unique and there are many proven approaches to solving these
issues. We recommend the Heads First: Design Patterns book published by O’Reilly as
an excellent resource. This approach provides a common language when working with
our developers and will make the overall model make even more sense when studied
with the knowledge of design patterns as a foundation. Programming to an interface
allows us to seamlessly swap out components of the application as needed. For
example, the OrderPackager is called through a consistent interface so that the
underlying, specific version of the order package can work very differently from site to
site if needed. This approach also allows us to swap out major components of the
architecture if needed or desired.

Use the Page to your advantage. When building the web site, minimize the amount of
code in the code behind wherever possible. Use code behind whenever there is
business logic. Each page is generally associated with a single collection.

Extensibility. While the user may add new tables and classes to the application, they
will not have the ability to extend the properties of existing objects. The SDK developer
may certainly use extension methods to add business functionality to the underlying
classes. The Management Console is not extensible by the SDK developer.

Use of GUIDs/Key structure. We have chosen explicitly to use GUIDs for all primary
keys. This allow for globally unique entries and also allows entries to be made and
relationships honored within the NHibernate session prior to the data being committed
to the database while ensuring that multiple users would never generate the same
primary key.

Table Standards. When a table is named it is normally given a description that
denotes a single entry in the table — for example Customer or OrderLine rather than
Customers or OrderLines. The primary key of the table will be the name of the table
followed by “Id” for example Customerld and OrderLineld. Note the “init cap” format —

Page 5

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

each word in a compound column or table name has the first letter capitalized and not
others, therefore we use “Id” rather than “ID.”

Database/ORM/IData Controller

SEEE currently uses Microsoft SQL 2005 or Microsoft SQL 2008 as the underlying
database engine. There are a small number of stored procedures and full-text indexing
is used for searching, but other than that, there is not specific requirement for SQL
Server to be the underlying database.

NHibernate for .NET is our object-relational mapping tool which handles database
interactions. There are a few targeted areas (such as pricing calculations or
integrations) that utilize direct SQL for speed, but, in general, NHibernate manages the
database interactions directly, including complex objects such as many:many and
one:many (parent/child) relationships. Lazy loading is one of the excellent functions of
the tool so that related objects are only loaded when they are needed during
processing.

It is important to understand that NHibernate uses a session context to store data. Itis
important to flush the session in order to commit data to the database. Additionally, if
you are working with large sets of data, it can improve performance significantly by both
flushing and evicting data within an NHibernate session.

IData Controller is the data wrapper and includes the functions to tell NHibernate to
flush, evict, commit, etc. The reason the IData Controller exists is to allow us to abstract
out the data interactions from the chosen ORM. If a better ORM than NHibernate was
chosen, it would be a reasonable level of effort to swap it out without affecting any of the
standardized data access logic.

Insite.Model

The model is the container of all of the core business objects and related business
logic in the overall model. It contains all of the classes that are used for building and
maintaining the web site and, other than some of the functions within the Insite.Domain,
it is the core of the SDK. Significant detail about key components of the model will be
discussed later in this manual.

Data Store Singleton. This component of the model is what handles session
information and inversion of control. This is also where the Windsor Container is
implemented (see Castle Windsor project at http://www.castleproject.org), optionally
swapping out customer-specific componentry as follows:

e |WindsorContainer
e |DataController

e |PaymentGateway
e |ShippingEngine

e |OrderPackager

e |PromotionEngine

Page 6

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

e |PriceCalculator

e |EmailProcessor

¢ |BuildEmailValues

e |TaxCalculator

e ProductUpdate

e CustomerUpdate

e CustomerOrderUpdate
e ProductRefresh

e TaskBuilder

Additionally, this component does a license check whereby the system will ‘phone
home’ to the SEEE licensing server to validate the current license.

These optional plug-ins will be automatically loaded if a custom DLL implementing the
plugin interface is located in the bin directory. If none is found, it will use the standard
one in the Model or Domain.

This component is also a service provider used to retrieve specific sets of data as
needed and is the primary conduit for retrieving data directly through the IData
Controller. For example, see the following code as an example of how this is
constructed:

public static String GetNextCustomerNumber(String prefix, String format)
{
int nextCustomerNumber = 1;
NameValueCollection queryOptions = new NameValueCollection();
queryOptions.Set("UseSqlQuery", "True");
nextCustomerNumber =
DataStoreSingleton.DataController.GetCount<Customer>("SELECT
ISNULL(MAX(CAST(REPLACE(CustomerNumber,™ + prefix + ™,") AS INT)),0) + 1 AS
Count FROM Customer WITH(NoLock) WHERE CustomerNumber LIKE ™ + prefix +
"%"' AND ISNUMERIC(REPLACE(CustomerNumber,™ + prefix + ",")) = 1", new
Hashtable(), queryOptions);
return prefix + nextCustomerNumber.ToString(format);

ModelBase. This is the base class from which all other classes inherit. Common
methods in this class are available including:

e CompareTo

e Get

e GetCount

e GetList

e GetPropertiesCollection
e ImportXLS

Page 7

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

Some of the other functions this class services includes:
e List of states
e List of countries
e Load local tax rates
e |oad application settings

e Current web site
Insite.Domain

The Domain component represents everything that is outside of the model and dishes
up business services. This includes integration components to the ERP and payment
gateways. Calls that will eventually filter through the inversion of control (IOC) container
are called in the domain as the interface which are then filtered through the 10C
container into the model which has invoked/loaded the customer-specific version of the
functionality, such as the promotions engine.

The domain also handles the integration with Adobe Flex which is used to run the
Management Console.

Insite.Library

The library is a set of helper functions for common tasks in the web site such as regular
expression helper, hashtable generator, script helper, etc. General descriptions of each
are shown in a table in the Web Site Components section.

Adobe Flex

The Management Console is written using the Adobe Flex framework along with
FluorineFx for remoting to .NET (see www.fluorinefx.com) using AMF3 (Adobe
Messaging Format) for compact transfer of serialized objects and data between the
model and the management console. This component of the SDK is delivered as is and
is not extensible.

Management Console

The Management Console (MC) is the maintenance component of the SDK. This Flex-
based interface allows the user to set up web sites, configuration parameters, product
information, web content, product categories, etc. It is the heart of the maintenance
capabilities of the SDK.

The entire MC is controlled by an Application Dictionary which is designed to
dynamically allow changes to the labels and behavior of data elements. The Application
Dictionary controls will be extended to the menu objects and various other Ul
components such as buttons and tabs in the near future.

The application dictionary controls, for example, what properties are displayed or are

read-only by user role. It provides a very flexible way of creating user-role based
security and interface, including support for multi-lingual MC installations.

Page 8

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation
The MC also allows for user-specific saving of settings such as the data grid width,
column order, and column sort. The inherent import/export capability of the MC allows
data to be easily extracted, manipulated and re-imported when batch updates are
desired to be done.
The MC uses the Model-View-Controller design pattern in its implementation.
Global vs. Website Managed Iltems

When you access the Management Console you will notice that there are sections for
Global Settings, Global Management, Website Settings and Website Management.

Settings are intended for setup and occasional modification. Menu functions like
application settings, states, and carrier information are controlled in Settings
predominantly because it is gone into relatively rarely.

Management is intended for areas that are more frequently changed or modified.

Global is used for areas that are shared across the various sites in the MC. Products
and Customers are managed globally as are application settings.

Website is used for site-specific functions such as assigning promotions to a specific
site.

Page 9

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

Chapter 2: Order Flow

This chapter is designed to explain the basic order flow through Sitecore Ecommerce
Enteprise Edition.

How the user creates an order...

When a user is in the web site, they are typically browsing for products and adding them
to the cart. As soon as an item is added to the cart for the first time, an order object will
be created and its status will be ‘Cart’.

This order will persist throughout the session. Even if the user navigates away from the
current web site to another web site and then returns, the cart will be completely intact.

If you wish to garner statistics on abandoned carts, simply look for all the orders with a
status of ‘Cart’.

Steps in Order Processing

There is a generic way of processing orders

1)
2)

When an item is initially added to the cart, the CustomerOrder object is created
When the user adds a product to the cart, the system will use the quantity ordered
and calculate the price and create an OrderLine and update the value on the
CustomerOrder

When the user Views Cart, the system will display a list of the cart contents with the
currently calculated price

When the user chooses to Go To Checkout, the system will then go to a login page
which may allow the user to continue as a guest.

a. Note that every user is associated with a user profile in the

aspnet_Membership table. SEEE uses a combination of standard
membership services and our own user and customer tables. A user must
be established in the database to even begin the checkout process and
subsequently submit an order. A customer must exist in the system in order
to submit an order and customers are created automatically as needed and
associated with the user.

i. Aspnet_Membership is related to aspnet_Users on column userid

ii. Aspnet_USers is related to UserProfile on column username

. The user is typically allowed to register at this point and establish themselves

with an email/login and password. This allows them to return to the site and
see historical orders, depending on the site design.

Page 10

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

C.

New Users are automatically associated with a new customer record. In
typical commercial/B2B sites, the relationship between an authorized user
and the customer they belong to is normally pre-established.

The next page is normally the bill to/ship to page, also known as the address
page. The ship-to address can be marked as the ‘same as’ the billing
address. The billing address is typically only really used for validating credit
card information.

The next step is the Review/Pay page. This is the page that really does the
work including the following:

i. Based on the postal code and/or state of the shipping address (not
the billing address) taxes are calculated.

ii. Automatic promotions are also calculated on this page. For example,
orders > $100 get free shipping may impact the shipping dropdown.

iii. The shipping options are calculated on this page as well based on
the shipping address and contents of the order. Rules may be
established to control if the customer-specific shipper is used or if
certain products cannot be sent to a particular location such as a ban
on liquor shipments into certain states.

iv. This page then captures the credit card information and processes
the authorization (or sale transaction, depending on application
setting) as well, prior to confirming the order.

Once the user accepts the order by clicking on the submit order button, the
order will be completed and the status will be changed to ‘Submitted’. An
entry will be made in the Scheduled Task table to send the order over the to
ERP.

The final step that the user sees is the Order Confirmation page telling them
the order number generated by SEEE.

. When the integration service picks up the order and successfully submits it

to the ERP, the status of the order is changed to either ‘Processing’ or
‘Review’, depending on an application setting.

If the ERP system generates its own order number, that number is normally
posted back into the SEEE order during the Order Refresh process but, in
some cases, comes back at the same time that the order is successfully
submitted and the ERPOrderNumber is captured along with the change to
the status being ‘Processing’ or ‘Review’.

During the order refresh process, if shipments are processed, the status may
change to ‘Shipped’ or ‘Complete’ but could be a variety of status codes
such as Paid, Canceled, etc. depending on the specific integration.

Page 11

Sitecore Ecommerce Enterprise Edition @ Sl teco re@

System Documentation

Chapter 3: Web Site Construction & Components

In this chapter we will explore the components of the actual web site project:

v’ The template web site
v’ Categories

v’ Left-Navigation

v’ The Cart

Web Site Components — Base Constructs

When you install the template project, you will have references to a variety of
components that will be included in your installation including:

Castle.Core — part of Castle Windsor project for Inversion of Control
Castle.DynamicProxy

Castle.MicroKernel

Castle.Windsor

FluorineFx — part of access to Management Console

Insite.Model

Insite.Domain

Insite.Library

Microsoft.SqlServer.Connection

There are a variety of other references that will be part of the template site, some of
which you may be using in your site and many of which you will not.

The following is a list of included, base or sample components for building a web site.

This is source code that is included in the SDK and will allow you use the existing
source as a model for making your own pages. Almost all of these are ‘base’ code from
which you can extend and add additional functionality.

Page 12

Sitecore Ecommerce Enterprise Edition
System Documentation

Web Site App_Code

sitecore

With the SDK you will receive a fully functioning template site that has many pages with
code. There are some common components that are used in the structure of the site
that are discussed briefly below. Many of these are wrappers to access their
corresponding component in the model but then allow for extension by having them be

site code.

Component Description

CategoryPageBase A category page specific instance of
CommonCategoryPageStrategy

IHeader This was implemented as an interface because
some browsers had difficulty changing the
header/title information directly and this approach
seemed to solve the propblem

PageBase Wrapper to CommonPageBase and base class for
all pages.

ProductPageBase Wrapper to CommonProductPageStrategy

ProductSearchController Controller to help create site-specific searching

SearchResultsControlBase Common base for search results

SiteLinks Single place to contain common site links

UserControlBase Wrapper to CommonUserControlBase

Web Site Controls

Component Description

Common control allows the display of an
application message on the page

CommonApplicationMessageDisplay

Constructs the base page for a category based on
current values

CommonCategoryPageStrategy

Base page constructor and adds in hooks to
add/support css, javascript, set page title, etc.

CommonPageBase

Loads products into a product detail page and
constructs the metadata and page title
appropriately so that the page is web searchable
and may be indexed by web crawlers.

CommonProductPageStrategy

CommonUserControlBase Hold context objects such as current web site,
current customer, current user profile, current
customer order, current category, current product,

etc.

CommonWebPageContent Basic control to load content

PageStrategy Holding control to load a page

Insite.Library

Component Description

ControlHelper

Helps with date controls to fill in years and months

DynamicComparer

Used in sorting lists, use Linqg instead

FileHelper

Functions to read data from an Excel or csv files
and write Excel data

Page 13

Sitecore Ecommerce Enterprise Edition
System Documentation

sitecore

Component Description

ListHelper Creates a sorted list from any IList

LowerCaseHashtable Function to add items to a hash table with generics
and always in lower case for sorting

ObjectHelper Copies objects and resolves references so

NHibernate can properly track and flush

RegularExpressionLibrary

Uses regular expressions to help validate data
such as mail addresses or postal codes

ScriptHelper Positions a div as a popup in the center of the
screen — requires jQuery.

SortProperty Used in sorting lists — use Ling instead

SQLHelper Forms up full-text searches while preventing SQL
Injection

StringHelper A series of functions for manipulating strings

WebControlHelper Adds javascript so that an enter keypress in the
given TextBox will fire off the given LinkButton. For
some reason asp.net default buttons do not play
well with LinkButtons

WebPathResolver Helps load a given image and, if there is no image,

it loads a default image

Page 14

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

Chapter 4: Key Model Components

In this chapter we will explore several of the key components of the model. This
overview will familiarize you with some of the items and concepts you will be dealing
with regularly. Not all classes will be defined in this documentation — refer to the
Sitecore Ecommerce Enterprise Edition component help file for all of the available
classes, properties and methods.

At the end of this chapter you should be familiar with:
v Common Methods

Products & Categories

Customers

Promotions Engine

Shipping Engine and Order Packager

Document Manager

Payment Gateway

D N N N N N NN

Users

ModelBase

Since the architecture is organized around a framework, ModelBase is something that
each base class in the mode inherits from. This has allowed us, for example, to create
generic SOA wrapper methods on all of the classes which are used for the Management
Console which is written in Adobe Flex.

The ModelBase class has many useful methods that you will find useful throughout the
application. Feel free to browse this class and learn them. Some of the most useful
methods include:

e Evict — tells NHibernate to free memory — used in conjunction with flush
e Get - retrieve a specific object
e GetList —returns an IList of objects

Common Methods in Classes

Most of the classes in the model have the following common methods:

e Add[associated class] — this is a useful method to create relationships between
entities. For example, a category is composed of products and products are in
one or more categories. For example, Product has an AddCategory method
and Category has an AddProduct method which allows the relationship to be
defined from either direction.

Page 15

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

¢ Remove[associated class] — this is the opposite of the add and removes the
association.

e GetBy[specified property] — this is a way to retrieve a single object or an IList of
objects, depending on the method call. For example, Customer.GetByNumber
allows the developer to retrieve a specific customer using the
CustomerNumber field (human-readable key to the table). Gets in general
return an IList of an object in a hash table but typically a GetBy returns a single
object, but not always.

o Get[specified property] — this is a way to retrieve a specific related object. For
example, Customer.GetCustomerProperty will allow the developer to retrieve a
specific customer property for the customer in scope.

Overview of Key Classes

The following classes are the primary areas of Insite.Model that the SDK developer will
be working with. They are listed alphabetically as opposed to topically to help find them
in this list. There are many classes that are data holders (i.e. State or City) where we
believe the classes are enough self-evident and may be viewed in the help file so
therefore are not included in this list.

Affiliate

The affiliate class is a simple class that can be set up to help track affiliate programs.
The URL is used to capture what affiliate sent the user to the site so that special offers
could be made or for the site to actually display itself differently by using the affiliate-
specific image.

This class must be implemented in the site by design.
ApplicationLog

The application log is used to capture messages in the system for a variety of
occurrences.

One of the types of log entries is a ‘debug’ entry. These are controlled by the
Application Setting ‘ApplicationLog_LogDebugMessages® - if set to true, then the debug
message will be logged and if not, it will be skipped. These log entries will be marked
as type Debug.

When logging an error message in the application, simply call
ApplicationLog.LogError(source, message, batchnumber). The batch numberis an
integer that can be used to trace back to the set of data that caused the problem if
appropriate. The source would be the page or class that invoked the error and the
message is what the developer deemed applicable to report to the log. These log
entries will be logged as type Error.

You may also use the ApplicationLog.LogMessage method with the source, type (error,
information, security, debug) and message.

Page 16

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation
ApplicationMessage

The application message is used to store common messages to use in various places in
the application, especially useful for pop-ups. For example, OrderConfirmationMessage
can have the text ‘Your order was successfully placed’.

Carrier

Carrier and its associated classes CarrierZone, CarrierShipCharge, CarrierZoneRate,
and CarrierZoneZipCodeRange classes support the shipping engine. In essence, the
carrier represents the actual shipping carrier (i.e. FedEx, UPS, Yellow Freight) and then
the ShipVia classes relate to the Carrier and represent a specific service (i.e. Overnight
Air or Ground).

The carriers may use a pre-defined rating method (based on property RatingService) or
may use custom data tables which is what most of the carrier-related classes are for.
The following objects are used when the carrier is being rated within the application and
not relying on an external interface.

CarrierZone is a delivery area and the zone is typically defined by the
ZoneZipCodeRange. For example, when shipping from Minneapolis to Florida, the
zone may be zone 5.

CarrierZoneZipCodeRange defines the range of zip codes used to narrow down the
zone itself and from that calculate the rate. The presumption is that a particular carrier
as set up in the system has a singular set of zones and rates. If you have multiple ship-
from sites, you may need to use separate carriers to encode the zone/rate structure

properly.

CarrierZoneRate is what holds the actual rate for a given carrier/zone combination.
These are coded by weight so that each particular weight of the package would have a
specific rate. This is typical of parcel carriers.

CarrierShipCharge is a separate set of records that may be used to encode additional
shipping charges. For example, there may be a residential delivery charge or an
oversized package charge. There is no specific interface to expose this data to the
user, so these should be used carefully and are a flexible structure to hold charges that
are package or service-oriented as opposed to weight-oriented.

Make sure to read the class information on ShipRule, ShipRate, ShipCharge which is
related to the carrier class.

Category
Category is a major area of the system and is a way to group like items together.
Categories contain products and other categories and are used, in general, to pull
multiple products or other categories together for presentation on the site.
Important Point. Categories belong to specific web sites and must be established and

maintained by site. Products are global, so the way one associates which products
belong to a given site is specifically through the category construct.

Page 17

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

Categories may also be leveraged for some specialty uses and provide a simpler
mechanism to apply business rules to an entire set of products in a single place. For
example, you can associate a particular dealer to a particular category or group of
categories. This may then be implemented in the site as a way to only present those
categories (and subsequently products) that are available to a specific dealer. This
logic must be implemented explicitly in the site, but the constructs are presented
through the model to do so.

Many of the same classes that may be associated with a product may also be
associated with a category. Examples would include Property, Specification,
Restriction, Tax Exemption, and CrossSell. It is up to the site designer to know when to
use this functionality.

Finally, a category may also be assigned one or more subcategories which is done by
assigning the parent category to a subcategory to prevent an infinite loop. A given
category can only have a single parent to keep the integrity of the category tree.

Content (and related classes)

Because much of what makes up a web site is content, we have several classes that
are related to content management including:

e (Category

e EmailTemplate

¢ NewsAtrticle

e Product

e Review

e Specification

e WebPage

e WebPageContent

The Content class is intended to help with the workflow and approval of given contents
and stores the actual HTML content. It contains properties such as Approved,
PublishToProduction, and SubmittedForApproval.

Every Content entry has a link to the ContentManager which effectively manages all the
links to a given piece of content. For example, a Product will have a pointer to the
ContentManager and there could be multiple entries of Content pointing to the same
ContentManager. The ContentManager is intended to keep a single link between the
source entity (i.e. Product, Category, WebPage) and the current instance of its content.

WebPage is intended to store content managed pages. These pages may be added to
the site as needed and have no active data — they are static pages.

WebPageContent is intended for a section of content on a page such as a current
promotion slash on the home page.

Page 18

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

Customer

This class is much as you would expect — it holds data related to a purchaser on the
system. What makes customer distinct from User is that the User is an individual
person and a Customer is a purchasing entity. Every user that purchases from the site
will be established as a customer in the system.

There may be multiple users associated with a given customer. Conversely, a given
user may be associated with multiple Customers — this is typically for a sales rep, dealer
or sales manager — someone who is responsible for or to a group of customers.

The customer contains a great deal of information including name/address, tax
information, credit limit, etc. Customers may be imported/updated (we use the term
refreshed) from the underlying ERP system as well. This function is normally done
through the Sitecore Integration Service and is run nightly but may be configured to run
more frequently as needed.

Customers may have the following classes associated with them:
e (Carrier: Specifically allows only particular carriers to be used for this customer

e Product: This would be used to assign specific products to a customer

e ProductSet: This is analogous to WishLists and works much the same way —
see WishList. This allows saving named lists of products by customer as
opposed to user which is what Wish Lists do.

e Property: Customer Properties associated with the customer — see discussion
below on Property

e Salesman: which sales person(s) are associated with the customer

e User: which user(s) are associated with the customer

e |tis work noting that Customers may have multiple ship-to locations. This is
denoted by the difference between the CustomerNumber and the
CustomerSequence. This can be very ERP-specific. Guest users or public
customers tend to have a single customer record where the ship-to information
is the same as the billing information. Corporate customers, however, may
have a common billing record, typically denoted by CustomerSequence 0 and
additional ship-to locations with other sequences.

CustomerOrder/OrderLine
This class represents the actual order in the system as represented by the cart. As
soon as someone adds something to their cart, the order is instantiated. An order is
associated with the currently logged in user (even if checking out as a guest). As
products are added to the cart, each one either creates or adds to an OrderLine object.
Orders are always associated with a particular customer.

The status of the order begins life as ‘CART’. Once an order is completed and
payment taken, it is changed to Submitted. Once the order makes it to the ERP

Page 19

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

system via the integration service, it is changed to either Review or Processing
depending on the application setting indicating if the order will be reviewed prior to
accepting it into the ERP.

When the order is refreshed back from the ERP and it has been shipped, the status will
be changed to Complete. Other available status codes are Saved, Void, and Ready
For Pickup (a special case status when the order is being picked up in the store).

Depending on the application setting, the credit card is either hit for an authorization or it
is actually hit for the entire sale transaction.

There is also an order type field which is either Order or Quote. The developer may
choose to start orders as a quote and then convert them to an order when ready to
check out — it is a way to save the order for later recall as well. All orders stay in the
system, including cart orders (sometimes referred to as abandoned cart orders).

The key constructs in an order include:
e Customer Bill To (used for credit card verification)
e Customer Ship To (used for shipping calculations)
e Order Lines
e Product ordered
¢ Quantity Ordered
e Price

e Promotions applied

e Ship Via
e Credit Card Payment (current system allows a single credit card payment per
order)

e Gift Card — allows one or more gift cards to be redeemed as part of the
payment transaction

e Order/OrderLine properties are available

[]
There are many functions that are called as the order starts to move through the
payment page including the following:

e Apply automatic promotions (i.e. free shipping on orders > $500)

e Determine valid shipping methods based on product restrictions and/or
customer restrictions

e For rated carriers, run the OrderPackager to determine how the order will be
shipped and calculate all the shipping rates by valid ShipVia

e (Calculate sales tax

e Allow entry and application of an entered promotion

Page 20

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation
e Authorize or capture funds against the credit card if entered
Dealer

A dealer is generally used to define brick & mortar locations where the customers may
go to purchase products advertised on the site. The model contains name/address
information along with geocode data for use in a dealer locator. Dealers may also be
assigned to specific categories or products to allow context-sensitive lists of dealers.

Document Management

Documents are generally constructs associated with a category or product and are
structured similarly to web content. Examples will include PDF’s, Word documents,
Excel spreadsheets and image files. These are used for specification detail, product
schematics or whatever other document-oriented content you wish to expose to the
users. It could be considered a library of digital assets.

The classes involved in document management include Document,
DocumentManager, and DocumentType.

DocumentType is used to define the type of document by its extension. An icon may
be associated with the document type for presentation on the site. This is not currently
exposed in the Management Console.

DocumentManager is the central link to the list of documents. Each category and
product will have its own document manager link and each document is then associated
with a specific document manager.

Document is the actual digital asset, or, more precisely, the link to the actual asset on
the system.

Email Processing

There are several classes specifically associated with emails. The creation of an email
in the Management Console combines the EmailTemplate and EmailList object. There
are some standardized times when emails are sent out (see document on Application
Settings) such as when an error occurs, when an order is placed, and when shipment is
confirmed.

EmailTemplate is the holder of the actual email contents and is associated with an
EmailList. Data fields are tokenized and replaced within the template.

EmailList defines the attributes of the email and points to the template that contains the
content. It includes the subject line, who the email is from, and the optional from
address. If the template is marked as being a subscription email, the user must have
opted in or they will not receive the requested email. In general, once a specific
EmailList object is created, a set of users is added to it and then the data, if present, will
replace the tokens for the construction of the email body.

IBuildEmailValues is an interface to create email processors for specific purposes. In
order to know what data should be read and incorporated into the email, this inversion

Page 21

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

of control container is used per email to send. The BuildOrderEmailToList passing in a
customerOrder shown below is an example of this. This function grabs the actual data,
currently from either the Order or the Shipment, and maps the data into a common
token set to be replaced by the EmailPricessor.

IEmailProcessor is an interface to manage what emails to send and whom to send
them to. Its basic method is SendEmail.

An example of sending an order confirmation email:
// Send Order Confirmation Email
if (EmailList. GetByName("OrderConfirmation") = null)

String emailToList =
DataStoreSingleton.BuildEmailValues.BuildOrderEmailToList(customerOrder);
if (emailToList.Length > 0)

EmailList emailList = EmailList.GetByName("OrderConfirmation");

EmailListProcessor emailListProcessor = new EmailListProcessor(emailList);

emailListProcessor.Send(emailToList,
DataStoreSingleton.BuildEmailValues.BuildOrderEmailValues(customerOrder));

Filtering/Advanced Filtering

Advanced Filtering is a construct by which the site builder creates some generic ways to
group products together for presentation and the web master is able to set up their own
filtering groups. It is essentially a way of grouping products together explicitly without
the search function trying to ascertain the user’s intent and searching for, say, ‘Red’
products where it could return a search set that includes ‘Redolent Ginger’ as a result.
Another example would be ‘Shop by Brand’ separated from ‘Shop by Category’.

Advanced Filtering is typically reserved for sites with a large number of products where
a user would want to be able to find groups of items in various ranges of attributes. This
is considered a filtering operation rather than a search operation although this is a
nuanced differentiation.

Advanced Filtering is made up of the following classes:
e CategoryFilterSection
e FilterSection

e FilterValue
The Advanced Filter starts with the concept of a filter section. Examples would be
Price, Color, or Style. Once the section is created, categories may be assigned directly
to the section if appropriate — the entire category should fulfill the intended criterion of
the filter section.

Next, the FilterValues are created with the description to display (i.e. $50-100, $100-150
for a price section and ‘Red/Crimson, Blues/Greens’ for a color section).

Next, assign the specific products or categories that belong to that specific filter value.

Page 22

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

When the advanced filter set is presented, it will use the data constructed here to create
the filtered and presented list and know which parts belong to the specific selection.

Note that Advanced Filtering is a single-level construction to pre-group items together.
Searching could then be done beyond that within the filtered list.

GiftCard/GiftCardTransaction

A gift card is normally sold in a transaction on the web site (product property IsGiftCard
controls this behavior). So, let’s say a user purchases a $50 gift card on the site. When
the order is submitted, the system will then generate a gift card entry and associated
transaction to show the value of the gift card and establish an expiration date if
applicable. This code must be generated within the site since there could be several
variations on how this process ought to work.

When the gift card transaction is created, it is associated with the order on which it was
purchased.

When a gift card is redeemed, the system will check that it is a valid gift card (card
exists, is not expired) and that there is a balance on the card. Only the current balance
will be allowed to be redeemed against the order.

Interface Classes — General
There are several Interface classes that are intentionally created to allow for being
swapped out. As mentioned earlier, the Castle Windsor Inversion of Control Container
approach is being used and the DataStoreSingleton object will load the appropriate
version of the class at runtime by scanning the bin directory looking for any DLL
implementing one of the plug-in interfaces. Some of the interface classes are only
expressed currently with a single service class.
In general, the expressed instances of the interfaced class are contained in the
Insite.Domain. Examples include OrderPackager_Generic, BuildEmailValues_Generic,
or PaymentGateway Dummy.

Interface: IDataController
This is the core of how the model communicates with the database. Currently, the
IDataController is implemented to speak to NHibernate as the ORM. |DataController is
used extensively to speak to the database and manage transactions.

Interface: IEmailProcessor
This was discussed above with Emails and is used to send the actual emails.

Interface: IOrderPackager
This class is used to return a set of packages based on a specific order.

The standard OrderPackager will first add up the total weight of the order using the
Products in the order. The system will then determine the smallest package that is

Page 23

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

established by carrier that can accommodate the contents. If no single package can
handle the entirety of the shipment (exclusively by weight), then the system will close
one package and open another.

This process will proceed until a list of packages with their dimensions and weights are
completed which is then typically used to pass to the various rating services to arrive at
an estimated freight amount by service.

Interface: IPaymentGateway

This is the interface used for handling transactions against the selected payment
gateway. Its only method is to SubmitTransaction which passes in the type of
transaction, the credit card data (in-memory only) and customer order object. The
gateway must then be able to process the various transactions such as authorize,
capture sale or void.

Interface: IPriceCalculator

This interface is used to control pricing logic within the system. While there is already a
pretty comprehensive pricing capability within PriceCalculator_Generic, it is another
example of how pricing could be extended for a given site by changing out the pricing
engine.

Interface: IPromotionEngine

This is another example where it is unlikely to replace the existing engine, but it is
available to be done. Promotions, in particular, are a complex structure where different
actual classes are invoked depending on the setup. See the section on Promotions for
additional information.

Interface: IShippingEngine

This is very analogous to the promotions engine. The shipping engine is used both to
determine what carriers/services are available given the contents of the order and the
destination along with the estimated shipping cost.

Integration: ITaxCalculator

The TaxCalculator_Generic is a version that will use the tax constructs already in
Sitecore Ecommerce Enterprise Edition to calculate tax. This means that the state and
postal code will drive the aggregated rate of tax and the tax code on the product or
exceptions defined in the tax entities will determine if a given item is excluded from
taxation. The customer may also be established as tax excempt.

PackageLine

This is a class that is relatively rarely used. It is currently designed to integrate with
Insite Software’s InSiteShip application to pull in, during the Shipment Refresh, the
packages and the package contents. This class is used to show what items were
actually packed in each package.

Page 24

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

Product

This is the most central class in the entire model and there are many classes that may
be associated with it. Products, at their core, are simply those items that may be sold
on the web site. Only Active classes will be generally available to the site and there are
many properties that may control specific behavior on a given site. A good number of
these properties are truly placeholders and are available for the site designer to
leverage, but do not assume that they are implemented as standard.

Note that products can be an item sold directly or be considered a cross-sell or
accessory, they can be associated with one or more categories, or can be specialty
products (i.e. Gift Card)

Products may have any or all of the following associated with them:

Category — indicates what products belong to a specific category
Category Cross Sells — products associated with a category’s cross-sells
Customer — products associated with a customer

Dealer — products associated with a dealer

Inventory Transaction — inventory transactions for a product
OrderLine — product being purchased on an order line
ProductFilterValue — part of advanced filtering

ProductAccessory — accessories associated with a product
ProductCrossSell — cross sells associated with a product
ProductProperty — custom property for a product
ProductSpecification — specification data for a product
ProductTaxExemption — if the product is part of a tax exemption
PromotionResult — product-specific promotion results
PromotionRule — product-specific promotion rule

Restriction — product is restricted from being sold in certain areas
Review — review data for a product

ShipRule — product-specific shipping rule

Subscription — a specific subscription on a specific order where the product is
the product being subscribed. SubscriptionLines then define the products that
will be shipped

SubscriptionLine — product within the subscription that is being fulfilled
Subscription — standard products within a subscription

WishList — product on a wish list

Some of the key properties of the Product that may not be obvious include:

Page 25

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

Active (date) — this determines if the product is active and is returned in
various searches or is able to be added to the cart. The Active date must be
less than or equal to the current order date and the DeactivateDate must be
either null or greater than the order date.

AllowAnyGiftCardAmount — if set to true the amount may be entered by the
user and the gift card will typically be generated dynamically. If set to false,
this would indicate that the qift cards are already established in the system with
pre-defined amounts.

CategoryTree — this is hierarchical list of categories that the item is assigned
to. Itis used in the PromotionRules engine and TaxExemption to enable the
system to traverse up the tree from a given category to its parent categories to
see if an item ‘belongs’ to a category. For example, if a part is assigned to
category “Bed” which belongs to “Bedroom” which belongs to “Furniture” and
Furniture is marked as tax exempt, the system needs to also make all products
belonging to subcategories of Furniture to also be tax exempt.

ERPManaged — this property indicates if the product should be updated by the
ERP integration update. If this field is not marked as true, then even if the part
exists in the ERP, it will not be updated.

ERPNumber — while this may be the same as the product number (name) in
the system, this field is used for connecting the ERP product/item number to
the SEEE version of the product.

IsConfigured — there is a base production configuration capability in the
system and this flag indicates that the product is a configured product. The
actual configuration must be expressed through the site design.

IsGiftCard — this flag indicates that the product, rather than being a physical
product necessarily, is actually a gift card. See the Gift Card section for
additional information.

IsSubscription — this is another capability of the system which allows for an
item to be created as a subscription item which then contains other products
that are included in the subscription. See the Subscriptions section for
additional information.

Name - this is a unique key on the product table and is used to identify the
human-readable part number for the product. This is also used when
presenting the title on a product detail page, so this is often either the ERP
number or the short description.

PriceCode — depending on the ERP or the way pricing was implemented, this
field is used to group products into pricing categories. Customers may also be
grouped into pricing categories and pricing may be impacted by how a given
product is set up, so this field could be meaningful. Other than this, there is no
standard functionality to it.

SubscriptionMonths — this is a way to indicate the standard months for which
a given subscription product is to be fulfilled. It is used in the repeating task
that will generate new orders from a subscription order.

TaxCodes — these are used in the tax processor. Note that there is a site
setting called the Non-Taxable TaxCode. This is the current way that the

Page 26

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

system knows that an item is tax exempt. For example, if the non-tax code is
‘NT’ and the item’s tax code 1 is marked as ‘NT’, it effectively makes the item
non-taxable.

Trackinventory — this flag indicates if the part should actually decrement
inventory balances in the InventoryTransaction table. If the site is not tracking
inventory, then this flag should be turned off to help improve performance.

Promotions

Promotions are a major function of Sitecore Ecommerce Enterprise Edition and it is not
often modified for specific sites. See the documentation on the Management Console

for additional information on how Promotions are defined and used. The following is a

list of the classes that are involved in the promotions engine:

Promotion — this is the top level of a promotion. Promotions are created as
global and then assigned to specific web sites.

PromotionCode - this is a table that identifies which promotions have been
applied to which orders

PromotionProcessor — this is the parent class that is actually called do to the
work of applying the promotion. It uses an IList of promotions and the order
and will then apply the valid promotions against the order.

PromotionRule - the promotion rules (and there are several specific ones) is
used to determine if an order qualifies for a particular promotion

PromotionResult — this is how the promotion is expressed if it passes the
rules. Examples are taking an amount off the order, off of shipping, shipping
being free, getting a product for free or adding a product to the cart from a
qualified list of products.

Property Class (generic)

The property class is something defined in the ModelBase and is associated with:

Customer
CustomerOrder
Dealer

Product
OrderLine

UserProfile

The intent of the Property class is to provide a generic way to associate custom data
with an object. These are simply name/value pairs in the database and are used to
store any sort of attributes that are not already exposed by the model.

Page 27

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

Salesman

The salesman (sales rep) class is used to denote which internal sales rep in the
company is responsible for their customers. There is a parent salesman property to
create a sales manager hierarchy that may be used.

Customers may be assigned to multiple sales reps.

Each user may be assigned to a specific sales rep. The sales rep itself may be
assigned to a specific user to help automatically identify them if desired.

Scheduled Task

This is one of the core constructs used for integration. See the separate section on
Integration Services for additional information.

Shipments

There are several classes involved in tracking shipment history and these are
dependent on how the integration service was written for the specific ERP.

Shipment - this is the class that saves actual shipments. It contains the order that was
shipped, the shipment date, and if a shipment confirmation email was sent.

ShipmentPackage - this is the construct that will save the tracking numbers. If
integrated with Insite Software’s InSiteShip application, the shipment packages and
package lines will be created automatically. If not, then an integration needs to be
created in order to create the packages associated with a shipment. The packages will
basically encode the size, weight, and tracking number and optionally the ship via code
and freight charge.

PackageLine — this class represents the contents of the shipment package
Shipping Rules & Constructs

Shipping is a fairly deep set of objects and constructs and was based on the approach
used by Promotions. It is overrideable using inversion of control.

ShipCharge — the intent is to allow adding specific, additional shipping charges to the
calculated charges. The standard behavior is to add all shipping charges associated
with a carrier to the overall cost of the shipping charges. This allows the site to add
other charges to the calculated charge and simply add it to the calculated charge.

ShippingClassification — this is intended to be used to define products into specific
groupings for calculating shipping charges. For example, if the FreightQuote rating
service is used, this classification would represent the standard freight class (i.e. 50, 55,
62.5). When the shipping engine is invoked, it would aggregate weight by each
product’s shipping classification and use that data to calculate the overall shipping
charge on a truck shipment.

Page 28

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

ShipRate — for carriers that are have custom rate tables, the ship rate is what encodes
the rate and, at this level, is applied against a particular ship via code and order range.
The ship rates are used to apply fixed shipping rates per order value. This can be either
a fixed amount or a percentage of the order, depending on the calculation method on
the carrier.

ShipRule - this is part of the calculation engine and is used to determine if a particular
carrier or service is available for a given order. If a rule is at the carrier then the
ShipViald is null and, conversely, if the rule is at a particular shipvia, then the Carrierld
is null.

ShipRule.... — there are a series of specific ship rules types that make specific checks
to see if the particular rule applies or not. While ShipRule is in the database,
ShipRulexxxx is purely a code construct.

ShipVia — this is the actual service within the carrier that is being used. For example,
FedEx has an overnight service and a second day service — each of these would be a
different ShipVia. The ShipVia also encodes the ERP’s version or code for the same
service. The Ship Code field is intended to represent the carrier’s identification for the
service and for the services that are using on-line rating services such as FedEx and
UPS, these codes must match the carrier’s code list.

ShipViaShipCharge — this is the same as the ShipCharge but applies to the specific
service. The same distinction used for ShipRule is applied since the data for both levels
of ship charge are in the same physical table.

Specification

Specifications are associated with both categories and products and are a combination
of optional content and name/value data. Specifications can contain formatted
informational content or they can really be used as product-specific specifications such
as color, size, weight, Ohm impedence, etc. Specifications are typically presented on a
product detail page and could be used for comparing like products. There is also a
SortOrder that may be used to define the order in which the specification data is
displayed.

Subscriptions

The concept of the subscription is that there is a part, marked as a subscription, that
contains one or more other parts that will be automatically fulfilled on a periodic basis.
Think of a tune-up kit for a lawnmower, as an example. The customer orders the
subscription item which indicates the price of the subscription and the frequency of
fulfilment. The contents of the subscription then may be a spark plug, quart of oil, and
oil filter.

There is a process that runs checking for when subscriptions are to be fulfilled. When a
subscription comes due, based on the original date of the subscription and the date
comes due for another fulfillment, an order will be created automatically and submitted
to the ERP.

Page 29

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

Please note that the Authorize.Net CIM module must be in place in order to support
subscriptions if they are to be paid by credit card. This module/payment gateway is the
only way for Sitecore Ecommerce Enterprise Edition to be able to charge a credit card
or create a new authorization without having to store credit card data. When the
subscription is initially created, if there is no CIM profile, the system will automatically
set one up and retain the customer/card profile id.

SubscriptionProduct — this is the set of products associated with the product marked
as ‘IsSubscription’. This class is used to denote which products belong within a
subscription.

Subscription — this is the placeholder in a specific order that initiates the subscription
itself.

SubscriptionLine — a line for each SubscriptionProduct will be created and associated
with the subscription.

Tax Calculations

If the standard tax calculator is being used, there are several areas in the system that
are involved in tax calculations. These are outlined as follows:

WebSite — In the WebSite itself is a property called TaxFreeTaxCode. This is often set
to ‘NT’ (non-taxable). This is the trigger to determine if a customer or product is tax
exempt. The website also defines the tax calculation method (dollar, percent, none,
calculate). Only the calculate method goes through the state/local tax rate and tax rate
exemption logic.

Customer — in the Customer class is property TaxCode1. If this is set to the
TaxFreeTaxCode, the customer is considered tax exempt.

Product - in the Product class there is also a property TaxCode1 that works the same
as with the customer — if set to the TaxFreeTaxCode, the product is tax exempt in all
jurisdictions.

State - this construct is used to capture the tax rate and exemptions at a state level.
The state has a taxrate and taxable property. If the state is taxable then the tax rate is
applied against the order total. If freight is also marked as taxable, freight and additional
handling are added to the taxable order total.

LocalTaxRate — this class is used to define tax rates at a zip code level. This rate is
calculated separately from the state tax rate and the two are added together. The
taxfreight property is honored at the local level irrespective of the flag at the state level.

TaxCalculator_Generic — this is the primary tax calculation engine that honors the
various parameter selections as defined above. This program may be overridden if
needed.

TaxExemption — this class is used to define specific products or categories that are tax

exempt in a particular state or locality. Exemptions may be applied over specific dates,
so, for example, Florida has a tax holiday over the Memorial Day weekend, the tax

Page 30

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

exemption could be applied for just that period of time. A tax exemption is first
established by tax jurisdiction (state/local) and then by product or category. When the
tax calculator runs, it checks each line to see if it has a current exemption and, if so, the
amount of that line is excluded from the taxable total.

UserProfile

The UserProfile is used in conjunction with the aspnet_Users construct to track users in
the system. A User is defined by their login and the system stores their email address,
password, password reset question/answer and roles along with some other
parameters. The username property must be unique and it is traditional, but not
required, to use the email address as the username.

UserProfiles are assigned roles and that role will define security and other functionality.

UserProfiles may also be related to Customers, EmailList, WishList, Custom Properties,
and a single Salesman.

Vendor

A vendor is typically the manufacturer of a given product. Each product may be
associated to a specific Vendor. The vendor construct may be used for pricing when
the idea is to markup from cost a specific percentage by vendor.

WebSite

While much of the data in the system is global, the WebSite class is used to define
various rules and options for a given web site. Licensing is also enforced at the web
site level using the URL of the site.

It is expected that each web site has its own URL landing page. Typical uses of
different web sites in the Sitecore Ecommerce Enterprise Edition perspective is a public-
facing site and a private site. The public site (often called a B2C site) is used for casual
users to come into the system and look at products but may or may not be able to
purchase them. It is common to leave various bits of data, such as current inventory
levels, off the product information pages in these sites.

The flip side to the public site is a private site. These are typically called B2B and
require a login to gain access to any of the pages in the site and certainly to place
orders. Since the audience is quite different for these two types of sites, it is common to
have different functionality in addition to difference content.

There are several parameter options associated with the web site that you should
reference the Management Console Reference Guide for additional information.

While some classes are built directly in context of the site, others are simply assigned at
the site level. The following are the constructs associated with a site:

e Carrier
e Category
e Country

Page 31

Sitecore Ecommerce Enterprise Edition
System Documentation

CrossSell
NewsArticle
Promotion

State

WebPage
WebPageContent

WishList/WishListProduct

The concept of the Wish List is a list of products that a given user is interested in
purchasing some time later. Since the system supports multiple wish lists, it is possible
to use this construct to hold repeating order information, top-10 items to purchase, etc.
It is basically nothing more than a list of products with an optional quantity and its
associated User.

The WishListProduct is what stores the actual product that’s on the wish list, along with
a quantity.

There is no standard logic to decrement the quantity of a wish list once a user adds a

wishlist item to their cart. Likewise, there is nothing that will automatically notify a user
that a wishlist item is in stock or out of stock — these are all functions that the developer
may add to their site as needed.

Page 32

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

Chapter 5: Integration

In this chapter we will provide an overview of the structure of integration including:

v’ General flow of integration
v’ Windows Integration Service

v' Integration Web Service

General Integration Flow

The following diagram shows the general flow of integration when there is a direct
database connection on the Windows Integration side. In the case where a web service
is called from within the Management Console, the flow is different.

Integration Architecture

Management Console Web Integration Service \Q g

af
S@fwce o ERP DB Server
s

Web Server Web Server|

Windows Integration Service

Database Server

Firewall

Basic Workflow

There are two primary components to the integration process:

¢ Windows Integration Service — sits behind the firewall and controls
communications between the web site and the ERP. It basically wakes up
every 30 seconds and checks for work to do from the web server.

e When the service initially connects, it checks for a newer version of itself from
the web server. If there is a newer version of the integration DLL, it will be
unloaded from memory in the Windows Service, pull down the new one, and
restart the DLL. This allows for in-line updates of integration from the web

Page 33

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

server directly without having to get on the client machine and perform
updates.

e Web Integration Service — this is a web service that is connected to the
Management Console and responds to requests made by the Windows
Service.

Refreshes

A Refresh is our generic term indicating that data is retrieved and synched up between
the ERP and the web site. The basic approach is to pull a full set of data from the ERP
using some parameterized queries and then send this data up to the web site. On the
web site, there will be a specific, targeted refresh class (i.e. CustomerRefresh,
ProductRefresh, DealerRefresh, etc.) which will take this data that should come up in a
standardized format and update the SEEE database.

As the synch/refresh process is running, the integration service quietly waits until it gets
a signal that it is complete and then moves on to process the next request. Specific
refreshes may also be controlled by an application setting indicating to perform the
refresh.

Looking at something like the ProductRefresh, there are some typical business rules
such as:

e If the application setting ERP_RefreshProducts is set to FALSE, skip the
refresh

e |[f the product is not ERP Managed, then the data from the ERP is ignored

e |[f the product does not come up in the dataset and it is ERP managed, it will be
marked as deactivated on the date of the refresh in the web database

e There is an application setting (ERP_ RefreshProductColumnsNotToOverwrite)
that defines specific columns to retain, regardless of the data coming back from
the ERP

There are many application settings that help control the flow and behavior of
integration, refer to the Sitecore Ecommerce Enterprise Edition AppSettings
documentation for more information about specific application settings.
As refreshes are run, they will typically log their progress in the Application Log.
Almost all integrations are data pulls with the specific exceptions of OrderSubmit, which
will often create customers or ship-to data and the order and SubmitPayment when the
credit card is charged immediately on the order.

Primary Classes
There are several tables and classes related to the integration process. Besides
numerous application settings, the following classes help control what happens — most
of which are in Insite.Domain:

Insite.Integration is the project is used to contain base/standard integration
components and then each of the ERP-specific integrations. These ERP-specific code

Page 34

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

files will control some of the order submission control and defaults used specific to an
ERP.

Insite.IntegrationService is the Windows service that calls the Web Service.

XXXRefresh: these classes (InventoryRefresh, DealerRefresh, etc.) are designed to
take the provided dataset and transcribe it into the data structures through the business
model.

ScheduledTask stores the work to be completed as requested by the web site.
Repetitive tasks, such as the ProductRefresh will have a RunDateTime and
LastRunDateTime and a Minutelnterval property which is the number of minutes before
running the next iteration (typically 1440, which is 24 hours). The system will not run the
integration until the RunDateTime and, once that is hit, it will add the minute interval to
the RunDateTime to ensure that it is time to run the integration again by looping through
the date, adding the minute interval until the date/time is greater than the current
date/time.

There is also a parameter property to the scheduled task which is typically used to
process a single entry. For example, the entry type SubmitOrders will normally have the
order # being submitted. When an order is submitted on the web site, for example, an
entry is created in the scheduled tasks table which is then picked up the next time the
Windows Service kicks off.

TaskBuilder: Typically this is created per ERP system and contains a method for each
of the refreshes that are supported. The list of tasks from ScheduledTask are passed
into the TaskBuilder which then processes additional information to break down specific
sets of SQL to run on the Windows Service side to retrieve various sets of data. For
example, RefreshProduct may retrieve a product masterfile, product pricing, product
cross-sells, product categories, etc. This is entirely dependent on the specific
integration code.

Creating your own custom integration

Inversion of Control has been implemented within the integration process as well. In
order to create your own integration service on the Windows Integration side, do the
following:

e Create a Visual Studio project called Customintegration (the DLL being looked
for will be explicitly CustomlIntegration.dil)

e Set a reference to the Insite.Integration dll
e Create a new class inheriting from IntegrationBase

e When you compile the solution and deploy it, the Windows Integration Service
will look for the custom integration and use it

Page 35

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

Technical Overview — Windows Integration Service

InSite.IntegrationService Project
e Is the Windows Service.
e Has areference to InSite.IntegrationBroker.
¢ Class IntegrationService

o Has instance of an IntegrationSite for Production and Pilot getting URLs
from the app.config as Production_Url and Pilot_Url.

o OnStart (called when the Windows Service starts up) creates a timer for
Production and a separate timer for Pilot with default interval set to thirty
seconds if not specified in app.config as Production_TimerInterval and
Pilot_TimerInterval, on elapsed, calls DoSiteWorkOnTimer for Production
and Pilot.

o DoSiteWorkOnTimer calls Production or Pilot IntegrationSite instance
DoWork method (depending if it's the Production or Pilot timer that is
elapsing).

¢ Class IntegrationSite

o Creates a new AppDomain named IntegrationDomain pointing to the
SiteName (Production or Pilot) sub-directory.

o Has an instance of IntegrationBroker.RemotelntegrationControl named
Handler created in new AppDomain (IntegrationDomain).

o Has an instance of the UpdateService.

o Contains DoWork method which first checks for updates calling the
UpdateService FindUpdates method, if there is an update available,
unloads the IntegrationDomain AppDomain and downloads the updated
dll (the IntegrationDomain property when called will re-load the
AppDomain), then calls the UpdateService UpdateComplete method.
Then it calls IntegrationBroker.RemotelntegrationControl (Handler)
Performintegration method.

InSite.IntegrationBroker Project

e Declares lintegrationControl Interface that contains SiteUrl Property and
Performintegration method.

¢ Class RemotelntegrationControl

o Has instance of lintegrationControl that loads InSite.Integration dil and
puts InSite.Integration.IntegrationControl in to Windsor Container.

o Contains Performintegration method which calls IntegrationControl
Performintegration method.

o Contains InitializeLifetimeService method override which returns null. As
handles are cached for a long period of time, return null so they don't
expire.

Page 36

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

InSite.Integration Project

e Has reference to InSite.IntegrationBroker.

e Class IntegrationControl

O

O

e}

Implements InSite.IntegrationBroker.lIntegrationControl.
Has UserName and Password properties
Has instance of IntegrationWebService.IntegrationService.

Contains PerformIntegration method which calls
IntegrationService.GetScheduledTasksForMachine returning an array of
IntegrationTasks, then calls PerformTasks passing in that array.

Contains PerformTasks method which loops through the IntegrationTask
array passed to it. If it is a SystemPause task it sleeps for the time
specified, otherwise it calls GetTaskDataSet passing in the task.

» [f the DataSet returned is not null, it uses reflection to get
the web method to call which is specified in the
task.RefreshType and passes the DataSet in to that web
method. For example, if the task.RefreshType is
“RefreshCustomers”, the GetTaskDataSet would return the
DataSet of Customers and this would call the web method
RefreshCustomers passing in that DataSet.

» [f the DataSet returned is null, it calls IntegrationBase.Build
passing in the task and reference to IntegrationService.
IntegrationBase.Build is a factory method that uses the
task.ERPType to create the correct ERP specific instance of
the ERP component giving it the task and reference to
IntegrationService in the constructor. It then sets the
UserName and Password of the returned object and calls
PerformTask on it.

Contains GetTaskDataSet method which checks the task.ERPType, if it's
odbcsql, it creates an OdbcDataAdapter, if sqglsql, it creates a
SqlDataAdapter, then passes that and the task.Queries to
IntegrationBase.GetData which returns a DataSet. GetTaskDataSet then
returns that DataSet.

¢ Class IntegrationBase

e}

O

Is the abstract base class for all the ERP specific components.

Contains constants defining the task.RefreshTypes. Any changes to
these require corresponding changes to InSite.Model.ScheduledTask
according to the comments.

Contains abstract PerformTask method that must be implemented in ERP
component.

Contains Build factory method which returns the ERP component as an
IntegrationBase.

Contains GetData method which accepts a DbDataAdapter and array of
IntegrationQueries. It loops through the array of queries and uses the

Page 37

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

data adapter to fill a DataSet, then loops through the query.keys to add
primary keys to the DataSet’s DataTables.

Class <ERP>Integration (where <ERP> is the ERP implemented, for
example Visuallntegration)

o Inherits from IntegrationBase

o Must contain PerformTask override method. The standard refresh tasks
are normally handled automatically by IntegrationControl, but
OrderSubmit and ExecuteQuery is typically implemented in this class. In
PerformTask, the IntegrationTask.RefreshType is checked and the
corresponding logic is executed. In some cases like Vantage where we
call web services for everything, everything is implemented in this class.

Management Console Side

InSite.Management Web Project

Contains the Web Services used by the Windows Service.

All integration service web methods require a user name and password. The
update service methods do not.

UpdateService.asmx / App_Code\UpdateService.cs Class

o Contains FindUpdates web method which goes through the /Updates
folder and returns the file names and the URL to the files in an array of
the InSiteUpdate class.

o Contains the UpdateComplete web method which accepts a file name
and deletes that file from the /Updates folder.

IntegrationService.asmx / App_Code\lntegrationService.cs

o Contains the refresh web methods (RefreshCustomers,
RefreshCustomerOrders, RefreshDealers, RefreshProducts,
RefreshSalesmen, RefreshShipments, Refreshinvoices) that accept
DataSets and perform the refresh logic.

o Contains GetOrdersToSubmit web method that returns a DataSet of all
orders whose status is Submitted.

o Contains GetOrderToSubmit web method that accepts an order number
and returns a DataSet for that order.

o Contains GetOrderProducts web method that accepts an order number
and returns a DataSet with that orders Products, ProductCosts and
Vendors.

o Contains SetOrderToSubmitted web method that accepts an order
number and sets that order’s status to Review or Processing depending
on the ApplicationSetting SubmitToReviewStatus.

o Contains GetPaymentsToSubmit web method that returns a DataSet of
all CreditCardTransactions whose status is Submitted and not yet
SubmittedToERP.

Page 38

Sitecore Ecommerce Enterprise Edition Sl teco re@

System Documentation

o Contains SetPaymentToSubmitted web method that accepts a
CreditCardTransactionld and sets that CreditCardTransactions status to
SubmittedToERP.

o Contains ExecuteQuery web method that accepts a DataSet and query
(String type) parameters and creates an instance of
InSite.Domain.ERPIntegration.ExecuteQuery and sets its DataSet
property to the DataSet sent in and calls its Execute method passing in
the query parameter. The method is named ExecuteQuery, but the idea
is that we are executing a query in the ERP on the Windows Service side
and returning the results from that query here.

o Contains GetScheduledTasks web method which gets a list of all
scheduled tasks whose RunDateTime is less than the current date time
and whose LastRunDateTime is null or it plus it's minute interval (if not
zero) is less than or equal to the current date time. Goes through that list
of tasks and sets their LastRunDateTime to the current date time then
flushes the nHibernate session. Then it calls TaskBuilderBase
BuildSystemTasks that accepts the list of tasks and returns a list of the
built system tasks that is in that list of tasks. Then it gets the task builder
from the Windsor Container that is configured for that client and ERP and
calls it's BuildTasks method passing in the list of tasks which returns the
list of built tasks. It then checks if any of the tasks in the list of tasks is a
ReSubmitOrders task and if so calls CustomerOrderRefresh
ResubmitOrders. Then it returns the list of built tasks.

o Contains GetScheduledTasksForMachine web method which accepts the
list of tasks and a machine name, validates that that machine name can
issue requests, then passes the list of tasks along to GetScheduledTasks.

o Also contains GetApplicationSetting, GetCustomerNumberPrefix,
LogError, LogInfo and DebugMessage web methods which are self
documenting.

InSite.Domain Project

ERPIntegration folder and namespace
RefreshBase (is the base class for all the Refresh classes and ExecuteQuery)
ExecuteQuery

CustomerOrderRefresh, CustomerOrderUpdate_Generic and
ICustomerOrderUpdate

CustomerRefresh, CustomerUpdate_Generic and ICustomerUpdate
DealerRefresh

InventoryRefresh

InvoiceRefresh

ProductRefresh_Generic and IProductRefresh, ProductUpdate_Generic and
IProductUpdate

SalesmanRefresh

Page 39

Sitecore Ecommerce Enterprise Edition @ Sl teco re@

System Documentation

e ShipmentRefresh
e C(ClientSpecificTasks_Generic and IClientSpecificTasks (not used)
e IntegrationTasks folder and namespace

o IntegrationTask

o IntegrationQuery

o ITaskBuilder

o TaskBuilderBase

o TaskBuilder<ERP>

Page 40

