
 

 

   Sitecore Corporation 

Sitecore. www.sitecore.net   support@sitecore.net 

Content Delivery info@sitecore.net  +45 70 23 66 60 

Sitecore Media Facilities 
 

 

Author:  Sitecore Corporation 

Date:  Friday, 10 August 2007 

Release:  Rev. 1.0 

Language:  English 

 

Sitecore® is a registered trademark. All other brand and product names are the property of their 

respective holders.  

 

The contents of this document are the property of Sitecore. 

Copyright © 2001-2007 Sitecore. All rights reserved. 



 

Sitecore Sitecore Media Facilities Page 2 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

Table of Contents 

Chapter 1 Configuration Options 3 
1.1 Architectural Notes 3 
1.2 Configuration Options Comparison 4 
1.3 Configuration 5 
1.3.1 Filesystem Media 5 
1.3.2 Database Media 5 
1.3.3 Architectural Notes 6 
1.3.4 Advanced Upload UI 7 

Chapter 2 Development Options 9 
2.1 Media Library web.config Settings 9 
2.2 App_Config/MimeTypes.config and mediaType Entries in web.config 12 
2.3 Media Path Naming Algorithms 13 
2.4 Sitecore security 14 
2.5 Development Options 14 
2.6 Supporting Original Media Extensions 17 
2.6.1 Using the Image Enhancements 17 
2.6.2 Changing Extensions from ASHX to Image Extensions 17 
2.7 Environment Considerations 19 



 

Sitecore Sitecore Media Facilities Page 3 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

Chapter 1  
 
Configuration Options 

The present article describes the media storage architecture of Sitecore CMS and applied guides 

on Sitecore CMS configuration. 

Users who wish to configure the media storage quickly for testing purposes should navigate to the 

following sections of the article: 

 Configuration Options Comparison - the overview of the two principal media storage 

methods. 

 Basic Media Storage Configuration Instructions. 

1.1 Architectural Notes 

All data in Sitecore is stored as text in an XML repository which abstracts an underlying 

relational database. Every item in the XML repository is based on a template, which defines the 

data structure – the fields which make up the data item. Items are therefore structured data, though 

unstructured data can be embedded in an item for instance using the Rich Text field type. 

Some data cannot efficiently be structured into an XML hierarchy, for instance the images, 

movies, PDF and MP3 files. Such resources are stored in Sitecore’s Media Library, which 

provides a number of media templates used to manage metadata about these media, for instance 

alternate text for images. The actual content of each media file can be either stored on the file 

system (in which case one of the fields in the media template references the location of the file on 

disk) or encoded and stored as a blob in the database (in which case one of the fields in the media 

template references the database record). This document uses the term “database media” for 

media items where the binary data from the file is stored in the database, “filesystem media” for 

media items where the binary is stored on the file system. 

Just like file-based media, media items in Sitecore should be organized into a hierarchy similar to 

a folder structure. In Sitecore, a folder is just an item based on a template that has no fields – a 

folder is an item that is just a container for other items. When files and folders are copied into 

Sitecore’s media library file systems as described below, Sitecore automatically creates the 

appropriate folder path in the media library and creates media items for the new files in the media 

library location corresponding to the original file system location. Certain Sitecore item naming 

restrictions are applied so the actual path to a media item may differ from its original file system 

path. Moving, renaming and deleting media on the media file systems is not supported, as these 

may not update the media library items appropriately. 



 

Sitecore Sitecore Media Facilities Page 4 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

Every field in a Sitecore template is versionable by default, meaning that Sitecore can keep track 

of values in the field in previous versions of the item. Sitecore provides two templates for each 

type of media item, a versionable template and an unversionable template. In general, versioning 

of media should only be implemented when versioning is expressly required and implications 

such as increased database storage space over time are understood. 

Because these settings affect the way data is managed by Sitecore, and as there is no default 

feature for converting a database media asset to a file media asset, these settings should be 

considered and defined during installation rather than afterwards. 

1.2 Configuration Options Comparison 

Consider the following factors for any new Sitecore installation: each setting has advantages and 

disadvantages for working with various types of media. 

Database Media Storage 

Advantages 

 Media can be published like any other resource 

 CMS services such as locking, security, versioning and workflow are supported for media 

 Images can be dynamically manipulated, for instance shrinking or stretching 

 Changes to the media library do not need to be synchronized with the file system 

Disadvantages 

 Very large media can result in performance issues 

 URLs for media items are altered, for instance ending in the .ashx extension which 

invokes ASP.NET processing rather than original file extensions  

 Can result in increased database and file system requirements as media are both stored in 

two databases (master and web) as well as being cached on disk 

Filesystem Media Storage 

Advantages 

 Media can be manipulated on the file system, for instance copying the media folder to 

another system 

Disadvantages 

 For multi-server environments, media must be propagated from the CMS server to the 

content delivery server(s) using the Sitecore Staging module (see 

http://sdn5.sitecore.net/Products/Staging.aspx) 

 CMS services such as locking, security, versioning and workflow can be applied to the 

metadata only. Every change of the file itself will require a new copy of the file in the file 

system. 

Every Sitecore media item involves two components: binary data generally originating from a 

media file and textual metadata stored in the fields making up the media item. When an item is 

http://sdn5.sitecore.net/Products/Staging.aspx


 

Sitecore Sitecore Media Facilities Page 5 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

added to Sitecore’s media library, the data can either be managed on the file system or encoded 

and stored in the Sitecore content repository. Each Sitecore server is configured to store data on 

the file system or in the database by default, but an advanced upload UI is available to some users 

allowing them to control whether uploads are stored on the file system or in the database. Using 

logic described under Media Path Naming Algorithms, Sitecore stores a URL in the Path field of 

the new media item. For media stored on the file system, the File Path field is populated with the 

path to the file on disk relative to the document root. By default, the Sitecore URL for a media 

item contains the .ashx extension mapping the incoming request to ASP.NET for processing. 

While this can be avoided by mapping the various media extensions to the ASP.NET DLL, this is 

generally not recommended – if the URL of a media item must contain the original file extension, 

media should be managed on the file system. File system media may be referenced by the URL in 

their File field when image manipulation or other services are required or by the value of their 

File Path field when the original extension is needed, though this can generally be avoided using 

forceDownload as described under Media Field Types and Accessing Media Field Values. 

Accessing media by the Path URL will always be slower than accessing media by File Path, 

though for the larger media the difference should not be considerable. 

1.3 Configuration 

1.3.1 Filesystem Media 

These settings should be used in case if media files will be stored on disk. 

1. Set Media.UploadAsFiles to true in web.config: 

  
<setting name="Media.UploadAsFiles" value="true"> 

2. Specify the MediaFolder path in web.config (files dropped into this folder will be copied 

into the Media.FileFolder and appropriate items will be created in the media library): 

  
<sc.variable name="mediaFolder" value="/upload"> 

3. Specify the Media.FileFolder path. Uploaded files will be stored in this folder:  

  
<setting name="Media.FileFolder" value="/App_Data/MediaFiles"> 

Note: For multi-server environments, media must be propagated from the CMS server to the 

content delivery server(s) using the Sitecore Staging module (see 

http://sdn5.sitecore.net/Products/Staging.aspx) 

1.3.2 Database Media 

These settings should be used in case if media files will be stored in the database. 

1. Set Media.UploadAsFiles to false in web.config: 

  
<setting name="Media.UploadAsFiles" value="true"> 

2. Specify the MediaFolder path in web.config (if a file system is copied into this folder 

Sitecore will automatically create media items for each and import the data to the 

database): 

  
<sc.variable name="mediaFolder" value="/upload"> 

http://sdn5.sitecore.net/Products/Staging.aspx


 

Sitecore Sitecore Media Facilities Page 6 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

3. Specify the Media.FileFolder path for cases when users will need to store a media file on 

disk: 

  
<setting name="Media.FileFolder" value="/App_Data/MediaFiles"> 

1.3.3 Architectural Notes 

Organizations must choose a default (database or file-system storage) and should use the other 

technology only when appropriate. For instance if database storage is the default then file-based 

storage might only be used for very large PDFs when versioning and other CMS services are not 

needed, but if file-based storage is the default then database storage could be used only for media 

which require security. The default storage option is defined by the Media.UploadAsFiles setting 

in web.config which defaults to false, causing media to be stored in the database by default 

(setting Media.UploadAsFiles to true will cause the default to be file-based storage). 

Sitecore provides two base file system directories for working with media, which should be 

considered drop-off points (files dropped into these folders will be imported into the media 

library). Whether using file storage or database storage, once files exist under a Sitecore media 

directory, they should not be removed, renamed or deleted, as this can break references in 

Sitecore. Additionally, directories should not be created manually in these media directories - 

Windows will first create a directory named something like "New Folder". Instead, create the 

media directory structure elsewhere before dragging it into the media root. 

Media stored in the database are associated with the directory specified by the MediaFolder 

setting in web.config, which defaults to /upload (as defined by the mediaFolder variable also 

defined in web.config). When media stored in the database are uploaded to Sitecore, they are not 

written to the file system – this folder exists to simplify import (if a file system is copied into this 

folder Sitecore will automatically create media items for each and import the data to the 

database). 

When Media.UploadAsFiles is false, by default media are stored in the database and never created 

on the file system. Database media items are created from files copied into directory specified by 

MediaFolder but the files are not copied to Media.FileFolder and are not used after the media item 

has been created. If the user chooses “Upload as file” in the advanced upload UI, the file is 

written to Media.FileFolder. 

When Media.UploadAsFiles is true, media are stored on the file system under the directory 

specified by Media.FileFolder. If the user disables “Upload as file” in the advanced upload UI, the 

file is not written to disk but stored in the database instead and no file is written to disk. 

Sitecore monitors activity in the directory specified by MediaFolder. When a new file appears, if 

Media.UploadAsFiles is false, a media item is created and the binary data is stored in the 

database. If Media.UploadAsFiles is true, a media item is created, any corresponding path is 

created under Media.FileFolder, the file is copied to this path which is referenced by the new 

media item; the file under MediaFolder remains but is not used. The ASP.NET worker process 

must be active for monitoring of the MediaFolder to be in effect – ensure the Sitecore user 

interface is responding before placing files for import into MediaFolder and monitor the logs 

while importing media to ensure ASP.NET is not overwhelmed by file system activity. The folder 

specified by Media.FileFolder is not monitored by Sitecore – regardless of how 

Media.UploadAsFiles is set, no media items are created from file deposited in Media.FileFolder. 

MediaFolder and Media.FileFolder should never be set to the same path.  

Under various conditions when a new file or directory is created in an NTFS file system, a 

temporary name such as “New Directory” is assigned before the new file system resource is 

named. It is therefore important not to create and rename files and directories under MediaFolder, 



 

Sitecore Sitecore Media Facilities Page 7 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

but rather to copy existing files and directory structures into this directory which avoids system 

renaming. 

1.3.4 Advanced Upload UI 

Sitecore provides an advanced upload dialog with various options which allow to specify where 

an item will be stored. 

To access the advanced upload dialog, navigate to the folder in the Media Library where the files 

are supposed to be uploaded and select the Advanced button in the Upload tab. 

 

The following dialog will start: 

 



 

Sitecore Sitecore Media Facilities Page 8 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

The dialog has the following options: 

 Unpack ZIP Archives 

Check to instruct Sitecore CMS to unpack zip archives after uploading. The archives will 

not be deleted after unpacking. 

 Make Uploaded Media Items Versionable 

Check to make the uploaded media items versionable. 

 Overwrite Existing Media Items 

Check to instruct Sitecore CMS to overwrite the existing files with the new ones if their 

names are the same. If unchecked, the postfix including the number will be added to the 

new filename. 

 Upload as Files 

Check to upload the files as the filesystem media, uncheck to upload the files as the 

database media. 

After the files are uploaded, their thumbnails will be displayed in the Uploaded Media Items field. 



 

Sitecore Sitecore Media Facilities Page 9 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

Chapter 2  
 
Development Options 

This section contains in-depth information for developers. 

2.1 Media Library web.config Settings 

Additional information is provided in inline comments within the default web.config file. 

Setting: Default: Description: 

MediaFolder /upload Sitecore will automatically monitor 

this directory for new files and create 

corresponding media items. If 

Media.UploadAsFiles is false, these 

files are left in the MediaFolder 

directory but the files are not used – 

their database representations are 

used instead. If 

Media.UploadAsFiles is true, these 

files are copied to Media.FileFolder 

and the files in this directory are used 

(MediaFolder is used only for 

automated media imports). 

Media.AutoSetAlt false If set to true, the Alt field of media 

items will be automatically set to the 

item name as determined by Sitecore 

media naming algorithms (see Media 

Path Naming Algorithms) when an 

image media item is created through 

uploading or directly on the file 

system, otherwise the field will be 

left blank. 

Media.FileFolder /App_Data/

MediaFiles 

Base directory for media stored on 

the file system. This directory does 

not exist by default but is created 

automatically if needed. Sitecore 

does not monitor this directory and 

create media items when files appear. 



 

Sitecore Sitecore Media Facilities Page 10 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

Media.CacheFolder /App_Data/

MediaCache 

The folder under which media files 

are cached 

Media.CachingEnabled true Enables or disables disk-based 

caching of media files (irrelevant 

when files are retrieved by File 

Path). 

Media.DefaultImageFormat Jpeg Sitecore will assume an image is in 

this format if the actual format 

cannot be determined from a file’s 

extension. It must be possible to 

parse the value of this setting to 

match a valid 

System.Drawing.Imaging.ImageFor

mat value (see 

http://msdn2.microsoft.com/en-

us/library/k5290c89(vs.71).aspx). 

Media.IncludeExtensionsInItemNames 

 

false Indicating whether to include a file 

extension when generating an item 

name from a file name. File.jpg in 

the file system becomes file. Some 

organizations may prefer these 

friendlier names in the CMS user 

interfaces while others may prefer to 

differentiate various types of 

documents by including the 

extension. 

Media.InterpolationMode High Interpolation mode for use in 

resizing images. It must be possible 

to parse the value of this setting to 

match a valid 

System.Drawing.Drawing2D.Interpo

lationMode (see 

http://msdn2.microsoft.com/en-

us/library/system.drawing.drawing2d

.interpolationmode.aspx) 

Media.MaxSizeInDatabase 

 

20MB Indicates the maximum allowed size 

of media intended to be stored in a 

database. The data provider will 

thrown an exception which the 

upload UI will use to inform the user 

the resource is too large. 

Note that the maxRequestLength 

attribute of /configuration/system. 

web/httpRuntime limits the amount 

of data that can be uploaded; this 

value should always be higher than 

Media.MaxSizeInDatabase. 

http://msdn2.microsoft.com/en-us/library/k5290c89(vs.71).aspx
http://msdn2.microsoft.com/en-us/library/k5290c89(vs.71).aspx
http://msdn2.microsoft.com/en-us/library/system.drawing.drawing2d.interpolationmode.aspx
http://msdn2.microsoft.com/en-us/library/system.drawing.drawing2d.interpolationmode.aspx
http://msdn2.microsoft.com/en-us/library/system.drawing.drawing2d.interpolationmode.aspx


 

Sitecore Sitecore Media Facilities Page 11 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

Media.MaxSizeInMemory 40MB Indicates the maximum allowed size 

of a media object in memory during 

processing, for instance generating 

thumbnails or otherwise 

manipulating including use of the 

image editor. 

Media.UploadAsFiles false When false, media will be stored in 

the database by default; when true 

media will be stored on the 

filesystem by default. 

Media.RequestExtension ashx Extension used to map media URLs 

to ASP.NET for processing by 

Sitecore. 

Media.SecureFolder /secure This setting is deprecated starting 

from version 5.3.1 rev. 070504. 

This setting is used to optimize 

FastMediaCache. When true the 

security checks in media cache are 

performed only on requests for 

media stored in the specidied 

Sitecore directory.  

Media.UploadAsVersionableByDefault false When true, templates supporting 

versioning of media are used; when 

false, templates not supporting 

versioning of media are used. 



 

Sitecore Sitecore Media Facilities Page 12 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

Media.UseItemPaths 

 

false When false, the value of the Path 

field for new media items includes a 

prefix, the compressed GUID of the 

media item and the .ashx extension 

(depending on 

Media.RequestExtension): 

~/media/F11C99D0112F4363A1A79

AAA89ACC96A.ashx 

When true, the value of the Path field 

and hence the default URL for new 

media items will be based on the 

path to the item rather than its 

compressed GUID. Under default 

conditions: 

~/media/dir1/dir2/sample.ashx 

Neither approach is known to be 

faster than the other – some 

organizations may prefer the unique 

GUID or the hiding of media library 

structure, and if the media library is 

too deep using the path may exceed 

URL limits imposed by IIS due to its 

reliance on NTFS. Other 

organizations may prefer friendlier 

URLs for media. 

Media.WhitespaceReplacement “ “ (a single 

space) 

The character to use when replacing 

whitespace (in general case - the 

character matching the .NET regular 

expression \W) in the names of 

uploaded media. 

2.2 /App_Config/MimeTypes.config and mediaType Entries in web.config 

Sitecore 5.3.1 introduces /App_Config/MimeTypes.config mapping file extensions to the 

appropriate mime types. Each /configuration/mediaType entry in MimeTypes.config maps a 

comma-separated list of extensions to the appropriate mime type for those extensions. For 

instance the following line maps the two extensions .au and .snd to the audio/basic mime type: 

<mediaType extensions="au,snd"><mimeType>audio/basic</mimeType></mediaType> 

For convenience of administration, the most common mime types are configured directly in 

web.config and MimeTypes.config only comes into play for files with extensions which have no 

corresponding mediaType entry in web.config. These entries have the following format: 

<mediaType name="JPEG image" extensions="jpg, jpeg"> 

This entry applies a name to the media type and maps file extensions to this type. 

  <mimeType>image/jpeg</mimeType> 

This entry defines the mime type to use for media assets created from files with these extensions. 



 

Sitecore Sitecore Media Facilities Page 13 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

  <forceDownload>false</forceDownload> 

A true value for the forceDownload element causes Sitecore to apply an HTTP “Content-

Disposition = attachment; filename=” header when linking to the .ashx URL of the media item, 

causing the browser to prompt the user to open/save as rather than opening the resource in the 

browser. 

  <sharedTemplate>system/media/unversioned/jpeg</sharedTemplate> 

This Sitecore template will be used for unversioned media items matching the extensions 

associated with this media type. 

  <versionedTemplate>system/media/versioned/jpeg</versionedTemplate> 

This Sitecore template will be used for versioned media items matching the extensions associated 

with this media type. 

  <mediaValidator type="Sitecore.Resources.Media.ImageValidator" /> 

A method in this class is executed to generate media warnings in the Sitecore UI such as if an 

image does not have the Alt field populated. 

  <thumbnails> 

    <generator type="Sitecore.Resources.Media.ImageThumbnailGenerator, 

Sitecore.Kernel"> 

      <extension>png</extension> 

    </generator> 

    <width>150</width> 

    <height>150</height> 

    <backgroundColor>#FFFFFF</backgroundColor> 

  </thumbnails> 

This section defines how the default thumbnail for a media asset will be generated. Thumbnails 

are generated on disk and cached just like any other request for a media item using the Path 

property. 

  <prototypes> 

    <media type="Sitecore.Resources.Media.JpegMedia, Sitecore.Kernel" /> 

  </prototypes> 

A method in the specified class will be invoked to populate metadata when new items of this type 

are created. 

2.3 Media Path Naming Algorithms 

Often, media directory and file names must be normalized to match Sitecore item naming 

requirements. The rules for naming media items and paths are the same for both database and file 

media. 

When files appear in directories under MediaFolder, Sitecore constructs the corresponding path 

under /sitecore/media library if needed and creates the media item under that path, but individual 

directories in the path may be renamed to meet Sitecore item naming requirements. 

Whether a directory or media item appears on the file system or is uploaded through the user 

interface, the name of the corresponding item in Sitecore’s media library will be based on the 

original file system entry name. When directories appear under the MediaFolder file system, 

corresponding folders in the media library are created as follows: 

1. The value of MediaFolder is replaced with "/sitecore/media library" (/upload/dir1/dir2 

becomes /sitecore/media library/dir1/dir2) 



 

Sitecore Sitecore Media Facilities Page 14 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

2. Any character matching the .NET regular expression \W (any nonword character) is 

replaced with Settings.Media.WhitespaceReplacement 

When files appear under the MediaFolder file system, corresponding items are created in the 

media library as follows: 

1. The corresponding media folder is determined and created using the algorithm above 

2. If Settings.Media.IncludeExtensionsInItemNames is false, the dot (“.”) and extension are 

removed; otherwise, Settings.Media.WhitespaceReplacement replaces the original dot 

before the extension 

3. Any character matching the .NET regular expression \W (dot (“.”) by default) is replaced 

with Settings.Media.WhitespaceReplacement 

The ItemNameValidation and InvalidItemNameChars settings in web.config are applied to all 

items including media. 

2.4 Sitecore security 

Security can be applied to media items just as to any other Sitecore item.  

Media stored on disk is also protected by Sitecore security. Extranet users should not have direct 

access to the folder defined by Media.FileFolder setting. Extranet users will retrieve media files 

via URLs generated by Sitecore which are validated against security. 

Administrators can prevent extranet users from uploading media files by restricting access to the 

media library. Don’t forget to unprotect the media library item (Configure tab in the Content 

Editor) if you want to change the rights for the item. 

2.5 Development Options  

Fields which will always reference image media assets should use the field type Image. Fields 

which could reference any other type of media asset should use the field type File, which does not 

support overriding attributes such as height and width. Media assets have a field named “Path” 

which contains the URL of the media item ending with .ashx; a File Path field is also populated 

with the disk path for file media assets. Logic such as image manipulation can be applied to all 

media assets when accessed by Path, but when File Path is used the original media file will 

always be served. File media items can be referenced by their File Path on disk or by their Path in 

Sitecore’s media library. Because all media items have a Path, all Sitecore components such as 

the HTML editor and XSL extension functions use the Path. 

To generate an HTML image element from a field of type Image in XSL: 

<sc:image field="image_field" select="." /> 

To create an HTML link to the media item referenced by a field of type Image or File in XSL:  

<a href="{sc:fld( 'image_or_file_field', ., 'src' )}">Link to an image or 

file</a> 

To create an HTML link to a file media referenced in a field of type File or Image by File Path 

rather than Path in XSL: 

<xsl:variable name="mediaitem" select="sc:item( sc:fld( 'image_or_file_field', 

., 'mediaid' ), .)" /> 

<a href="{sc:fld( 'path', $mediaitem )}" >Link to file media by Path</a> 



 

Sitecore Sitecore Media Facilities Page 15 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

See 

http://sdn5.sitecore.net/FAQ/XSL/Rendering%20Not%20Executing%20Certain%20Statements.as

px for an explanation of the {} syntax. 

Use the following code to get an Image or File field in .NET: 

Sitecore.Data.Fields.ImageField image = Sitecore.Context.Item.Fields["image"]; 

if (image != null ) 

{ 

  // field exists 

  if (image.Src != "") 

  { 

    // User has specified a resource 

    // URL is image.Src 

    // Path is image.MediaItem.Fields["path"] 

    // File Path is image.MediaItem.Fields["file path"] 

It is the developer’s responsibility to ensure the field exists, the user has specified a media item, 

and that the media item exists whether the media item has a file path or other conditions 

depending on requirements. 

Use the MediaManager class to get URLs of the images: 

   ImageField imageField = Sitecore.Context.Item.Fields["image"]; 

    string url = string.Empty; 

   if (imageField != null) 

   { 

    MediaItem mediaItem = imageField.MediaItem; 

       if (mediaItem != null) 

       { 

       MediaUrlOptions options = new MediaUrlOptions(); 

       options.Height = 300; 

       options.Width = 200; 

       options.UseItemPath = true; 

       url = MediaManager.GetMediaUrl(mediaItem, options); 

       } 

    } 

The main properties of the MediaUrlOptions class are described below: 

Name  Legal Values  Default Value  Description  

AllowStretch true | false false Allow stretching the image 

beyond its original size? 

BackgroundColor Color names (such as black or 

red) and HTML hex color 

codes (such as CE55E2) 

black Background color for the 

border added when an 

image is stretched beyond 

its original size (and 

allowStretch=false). 

Database Any Sitecore database defined 

on the site. 

content 

database of the 

current site 

The name of the Sitecore to 

pull the image from. 

http://sdn5.sitecore.net/FAQ/XSL/Rendering%20Not%20Executing%20Certain%20Statements.aspx
http://sdn5.sitecore.net/FAQ/XSL/Rendering%20Not%20Executing%20Certain%20Statements.aspx


 

Sitecore Sitecore Media Facilities Page 16 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

DisableMediaCache true | false false Disable the media cache for 

this request?  If true, the 

image will always be 

retrieved from the database, 

bypassing the media cache. 

Height Any positive integer  The height of the image. Be 

sure to include as=true if 

the height will be larger 

than its original size. 

language Any valid language name  Retrieve the image from a 

specific language version of 

the item. 

maxHeight Any positive integer  Maximum height of the 

image to display.  Scale the 

image down to this size if 

necessary. 

maxWidth Any positive integer  Maximum width of the 

image to display.  Scale the 

image down to this size if 

necessary. 

scale Any positive floating point 

number using a dot as a 

decimal point (such as 1.5, 

which corresponds to 150%) 

 Scale factor for the image 

to display.  Be sure to 

include as=true if the image 

will be scaled to larger than 

its original size. 

thumbnail true | false false Display a thumbnail of the 

requested file, useful for 

images as well as other 

media types, such as PDF, 

flash, and so on. 

version Any positive integer  Retrieve the image from a 

specific version of the item. 

width Any positive integer  The width of the image. Be 

sure to include as=true if 

the width will be larger than 

its original size. 

Additional information on using the <sc:image> element in XSL can be found by following the 

link below: 

http://sdn5.sitecore.net/Articles/XSL/5%203%20Enhancements/Image%20Enhancements.aspx 

http://sdn5.sitecore.net/Articles/XSL/5%203%20Enhancements/Image%20Enhancements.aspx


 

Sitecore Sitecore Media Facilities Page 17 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

2.6 Supporting Original Media Extensions 

By default, the Sitecore URL for a media item contains the .ashx extension mapping the incoming 

request to ASP.NET for processing. While this can be avoided by mapping the various media 

extensions to the ASP.NET DLL, this is generally not recommended – if the URL of a media item 

must contain the original file extension, media should be managed on the file system. 

But in case an organization needs the original image file extensions in the URLs the instructions 

below should be used. 

2.6.1 Using the Image Enhancements 

The XSL parameters called image enhancements are described on the following page: 

http://sdn5.sitecore.net/articles/xsl/5%203%20enhancements/image%20enhancements.aspx 

The column Shorthand contains the actual parameters that should be used in the URL, for 

example: 

This is an URL for the jpg image from the media library: 

http://server_url/~/media/Files/picture1 JPG.ashx 

The next URL returns an image with different dimensions: 

http://server_url/~/media/Files/4453 JPG.ashx?w=400&h=400 

The next URL returns a thumbnail for the media item: 

http://localhost/~/media/Files/4453%20JPG.ashx?thn=1&w=32&h=32  

An example from XSLT: 

<xsl:variable name="path" select="concat(sc:fld('image', ., 'src'), 

'?w=400&amp;h=400')" /> 

<img src="{$path}" alt="" /> 

These enhancements can be used for both the database media and the filesystem media, provided 

that filesystem media is retrieved via an http handler (URL ending with .ashx by default). 

2.6.2 Changing Extensions from ASHX to Image Extensions 

It is possible to change the extensions of media items from ashx to the original image file 

extensions by mapping the various media extensions to the ASP.NET DLL. 

For example we want to have .jpg extensions for the jpeg images. 

Navigate to a media item in the Media Library and change the extension from ashx to jpg in the 

Path field. 

For instance: 

The media item has such value in path field - ~/media/Files/picture1.ashx 

we change the extension to jpg - ~/media/Files/picture1.jpg 

http://sdn5.sitecore.net/articles/xsl/5%203%20enhancements/image%20enhancements.aspx
http://server_url/~/media/Files/picture1%20JPG.ashx
http://server_url/~/media/Files/4453%20JPG.ashx
http://localhost/~/media/Files/4453%20JPG.ashx?thn=1&w=32&h=32


 

Sitecore Sitecore Media Facilities Page 18 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

Go to IIS manager, select the site, select options in popup menu, click Home Directory tab, and 

click the configuration button: 

 

Set ASP.NET handler for files with jpg extension: 

 

Don’t forget to uncheck the Check that file exists checkbox. 

After that the next request http://server_url/~/media/Files/picture1.jpg will return an image from 

the media library. All Sitecore controls will work with such media item correctly. Image 

enhancements can also be used with such URLs. 

http://server_url/~/media/Files/picture1.jpg


 

Sitecore Sitecore Media Facilities Page 19 of 19 
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2007 Sitecore. All rights reserved. 

The disadvantage of this method is that you have to change the extensions in Path field for all 

items and you should add an extension mapping for every extension which you intend to use. 

2.7 Environment Considerations 

Sitecore generates absolute (from the document root) but not fully qualified (no protocol or 

hostname) URLs by default, so the same references can be used from any URL. 

When both content editorial (CMS) and content delivery (published site) environments are hosted 

on a single Sitecore instance, as soon as file media are created, the files are available both in the 

content editorial and content delivery environments, though in most cases it is necessary to 

publish media metadata as well. When the content delivery environment is hosted on one or more 

servers separate from the content editorial server, a mechanism is required to transfer file media 

from the content editorial server to the content delivery server(s). This is most commonly 

accomplished with the Sitecore Staging module using SOAP or FTP (see 

http://sdn5.sitecore.net/Products/Staging.aspx). 

Whether the content editorial and content delivery environments are on the machine or content 

delivery occurs on separate “runtime” servers, media publishing transfers both the metadata and 

the binary data from the master to the web database(s) for database media so there is no need to 

configure Staging to transfer separate media files. 

 

http://sdn5.sitecore.net/Products/Staging.aspx

	Configuration Options
	Architectural Notes
	Configuration Options Comparison
	Configuration
	Filesystem Media
	Database Media
	Architectural Notes
	Advanced Upload UI


	Development Options
	Media Library web.config Settings
	/App_Config/MimeTypes.config and mediaType Entries in web.config
	Media Path Naming Algorithms
	Sitecore security
	Development Options
	Supporting Original Media Extensions
	Using the Image Enhancements
	Changing Extensions from ASHX to Image Extensions

	Environment Considerations


